SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2368 7460 "

Sökning: L773:2368 7460

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrio, I. C., et al. (författare)
  • Developing common protocols to measure tundra herbivory across spatial scales
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 638-679
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and predicting large-scale ecological responses to global environmental change requires comparative studies across geographic scales with coordinated efforts and standardized methodologies. We designed, applied, and assessed standardized protocols to measure tundra herbivory at three spatial scales: plot, site (habitat), and study area (landscape). The plot-and site-level protocols were tested in the field during summers 2014–2015 at 11 sites, nine of them consisting of warming experimental plots included in the International Tundra Experiment (ITEX). The study area protocols were assessed during 2014–2018 at 24 study areas across the Arctic. Our protocols provide comparable and easy to implement methods for assessing the intensity of invertebrate herbivory within ITEX plots and for characterizing vertebrate herbivore communities at larger spatial scales. We discuss methodological constraints and make recommendations for how these protocols can be used and how sampling effort can be optimized to obtain comparable estimates of herbivory, both at ITEX sites and at large landscape scales. The application of these protocols across the tundra biome will allow characterizing and comparing herbivore communities across tundra sites and at ecologically relevant spatial scales, providing an important step towards a better understanding of tundra ecosystem responses to large-scale environmental change. 
  •  
2.
  • Hallin, Sara, et al. (författare)
  • Site-specific responses of fungal and bacterial abundances to experimental warming in litter and soil across arctic and alpine tundra
  • 2021
  • Ingår i: Arctic science. - : Canadian Science Publishing. - 2368-7460.
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2–3 orders of magnitude larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ15N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change.
  •  
3.
  • Henry, Greg H.R., et al. (författare)
  • The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 550-571
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Tundra Experiment (ITEX) was founded in 1990 as a network of scientists studying responses of tundra ecosystems to ambient and experimental climate change at Arctic and alpine sites across the globe. Common measurement and experimental design protocols have facilitated synthesis of results across sites to gain biome-wide insights of climate change impacts on tundra. This special issue presents results from more than 30 years of ITEX research. The importance of snow regimes, bryophytes, and herbivory are highlighted, with new protocols and studies proposed. The increasing frequency and magnitude of extreme climate events is shown to have strong effects on plant reproduction. The most consistent plant trait response across sites is an increase in vegetation height, especially for shrubs. This will affect surface energy balance, carbon and nutrient dynamics and trophic level interactions. Common garden studies show adaptation responses in tundra species to climate change but they are species and regionally specific. Recommendations are made including establishing sites near northern communities to increase reciprocal engagement with local knowledge holders and establishing multi-factor experiments. The success of ITEX is based on collegial cooperation among researchers and the network remains focused on documenting and understanding impacts of environmental change on tundra ecosystems.
  •  
4.
  • Hollister, R. D., et al. (författare)
  • A review of open top chamber (OTC) performance across the ITEX Network
  • 2023
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 9:2, s. 331-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment network in the early 1990s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the im-pacts of OTCs on the abiotic environment and the biota. Here, we review the impacts of the OTC on the physical environment, with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to under -stand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate temperature; however, the characteristics and magnitude of warming varies greatly in different environments; therefore, it is important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems.
  •  
5.
  • Lett, Signe, et al. (författare)
  • Can bryophyte groups increase functional resolution in tundra ecosystems?
  • 2022
  • Ingår i: Arctic Science. - Ottawa : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 609-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.
  •  
6.
  • Prevéy, Janet S., et al. (författare)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
7.
  • Riley, Breena, et al. (författare)
  • Stream diatom assemblages in an arctic catchment : Diversity and relationship to ecosystem-scale primary production
  • 2021
  • Ingår i: Arctic Science. - : NRC Research Press. - 2368-7460. ; 7:4, s. 762-780
  • Tidskriftsartikel (refereegranskat)abstract
    • We quantified benthic diatom diversity in streams in the Miellajokka catchment, about 200 km north of the Arctic circle in Sweden. Beta diversity among sites was related to local-scale environmental heterogeneity (occurring on the order of 1 km or less), and its magnitude was equal (Sørensen Index = 0.62) to levels previously reported for rivers on regional environmental gradients across hundreds of kilometres of Arctic Fennoscandia. Species turnover was the dominant (77%) component of beta diversity in the Miellajokka catchment. Small, stress-tolerant taxa dominated the assemblages, and there were no clear patterns of functional class among sites. Site ordinates from non-metric dimensional scaling were most strongly correlated with flood frequency (r = 0.83) and water temperature (r = 0.89), which was higher in harsh tundra sites than below treeline. Additionally, site ordinates were correlated (r = 0.83) with ecosystem-scale gross primary production — indicative of a link between diatom diversity and ecosystem function. Our results advance understanding of patterns diatom diversity in Arctic streams by quantifying local-scale variation that is understudied in this region, and by identifying the consequences of this local-scale diversity for an ecosystem-scale process.
  •  
8.
  • Rixen, C., et al. (författare)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572 - 608
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
9.
  • Scharn, Ruud, et al. (författare)
  • Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern Sweden
  • 2022
  • Ingår i: Arctic Science. - 2368-7460. ; 8:3, s. 858-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is rapidly warming high latitude and high elevation regions influencing plant community composition. Changes in vegetation composition have motivated the coordination of ecological monitoring networks across the Arctic, including the International Tundra Experiment (ITEX). We have established a long-term passive warming experiment using open-top chambers, which includes five distinct plant communities (Dry Heath; Tussock Tundra; and Dry, Mesic, and Wet Meadow). We have measured changes in plant community composition based on relative abundance differences over 26 years. In addition, relative abundance changes in response to fertilization and warming treatments were analysed based on a 7-year Community-Level Interaction Program (CLIP) experiment. The communities had distinct soil moisture conditions, leading to community specific responses of the plant growth forms (deciduous shrubs, evergreen shrubs, forbs and graminoids). Warming significantly affected growth forms, but the direction of the response was not consistent across the communities. Evidence of shrub expansion was found in nearly all communities, with soil moisture determining whether it was driven by deciduous or evergreen shrubs. Graminoids increased in relative abundance in the Dry Meadow due to warming. Growth form responses to warming are likely mediated by edaphic characteristics of the communities and their interactions with climate.
  •  
10.
  • Scharn, Ruud, et al. (författare)
  • Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern Sweden
  • 2022
  • Ingår i: Arctic Science. - Ottawa, ON : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 858-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is rapidly warming high latitude and high elevation regions influencing plant community composition. Changes in vegetation composition have motivated the coordination of ecological monitoring networks across the Arctic, including the International Tundra Experiment. We have established a long-term passive warming experiment using open-top chambers, which includes five distinct plant communities (Dry Heath; Tussock Tundra; and Dry, Mesic, and Wet Meadow). We measured changes in plant community composition based on relative abundance differences over 26 years. In addition, relative abundance changes in response to fertilization and warming treatments were analyzed based on a seven-year Community-Level Interaction Program experiment. The communities had distinct soil moisture conditions, leading to community-specific responses of the plant growth forms (deciduous shrubs, evergreen shrubs, forbs, and graminoids). Warming significantly affected growth forms, but the direction of the response was not consistent across the communities. Evidence of shrub expansion was found in nearly all communities, with soil moisture determining whether it was driven by deciduous or evergreen shrubs. Graminoids increased in relative abundance in the Dry Meadow due to warming. Growth form responses to warming are likely mediated by edaphic characteristics of the communities and their interactions with climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy