SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2373 9878 "

Sökning: L773:2373 9878

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbaszad Rafi, Abdolrahim, et al. (författare)
  • Photo-Switchable Nanomechanical Systems Comprising a Nanocontainer (Montmorillonite) and Light-Driven Molecular Jack (Azobenzene-Imidazolium Ionic Liquids) as Drug Delivery Systems; Synthesis, Characterization, and in Vitro Release Studies
  • 2018
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society. - 2373-9878. ; 4:1, s. 184-192
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, photoresponsive nanomechanical systems were prepared through the intercalation of positively charged photoswitching molecular jacks (azobenzene ionic liquids, Azo-ILs) within montmorillonite (MMT) layers (MMT@Azo-ILs). The study shows that MMT@Azo-ILs are photosensitive and the synthesized molecular jacks could change the basal distances of MMT layers upon UV irradiation. These changes come from changes in the structure and geometry of Azo molecules (i.e., cis-trans isomerization) between clay layers upon UV irradiation. The prepared photoresponsive nanomechanical systems were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscope (FE-SEM). Moreover, the in vitro release studies were performed in different conditions (upon UV irradiation and darkness) in pH 5.8 at 34 ± 1 °C, and it was found that the release rates from drug loaded MMT@Azo-ILs were higher upon UV irradiation in comparison with the release rates in darkness. According to the release studies, the prepared photoresponsive carriers might be considered as an excellent potential candidate in order to formulate smart sunscreens. © 2017 American Chemical Society.
  •  
2.
  • Aminoroaya, Alireza, et al. (författare)
  • A Review of Dental Composites : Methods Of Characterizations
  • 2020
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 6:7, s. 3713-3744
  • Forskningsöversikt (refereegranskat)abstract
    • Dental composites are becoming increasingly popular in esthetic restorative dentistry and present a promising substitute for amalgam. However, the major hurdles that hinder their total adoption in restorative dentistry are limited longevity and possible health risks, leading to significant attempts for addressing these shortcomings. Besides the new materials, the evaluation methods play a critical role in the introduction and improvement of these types of materials. This review aims to cover the characterization methods in the evaluation of dental composites that are most employed nowadays. Therefore, the methods for evaluating the physical properties of the dental composites are first explained. Subsequently, the assessment methods of curing kinetics and the mechanical properties of the composites are classified and reviewed. Afterward, the article delves into the introduction and classification of the microscopic and antibacterial evaluation methods. Finally, the test methods for assessment of in vitro cytotoxicity and self-healing ability are described. It should be noted, for each test method, the most recent and interesting articles are cited. It is envisaged that this review will facilitate an understanding and provide knowledge for the section and utilizing the most effective and suitable characterization methods for future research on the development of dental composites.
  •  
3.
  • Apelgren, Peter, et al. (författare)
  • In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink
  • 2019
  • Ingår i: Acs Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 5:5, s. 2482-2490
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 X 5 X 1 mm(3)) containing human nasal chondrocytes (10 M mL(-1)) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 +/- 13.8 cells per mm(2) observed after 30 days and 85.6 +/- 30.0 cells per mm(2) at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair.
  •  
4.
  •  
5.
  • Atefyekta, Saba, 1987, et al. (författare)
  • Antimicrobial Peptide-Functionalized Mesoporous Hydrogels
  • 2021
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 7:4, s. 1693-1702
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial peptides (AMPs) are seen as a promising replacement to conventional antibiotics for the prevention of skin wound infections. However, due to the short half-life of AMPs in biological environments, such as blood, their use in clinical applications has been limited. The covalent immobilization of AMPs onto suitable substrates is an effective solution to create contact-killing surfaces with increased long-term stability. In this work, an antimicrobial peptide, RRPRPRPRPWWWW-NH2 (RRP9W4N), was covalently attached to amphiphilic and ordered mesoporous Pluronic F127 hydrogels made of cross-linked lyotropic liquid crystals through 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. The AMP-hydrogels showed high antibacterial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, methicillin-resistant S. aureus (MRSA), and multidrug-resistant Escherichia coli for up to 24 h. Furthermore, the AMP-hydrogels did not present any toxicity to human fibroblasts. The AMPs retained their antimicrobial activity up to 48 h in human blood serum, which is a significant increase in stability compared to when used in dissolved state. A pilot in vivo rat model showed 10-100x less viable counts of S. aureus on AMP-hydrogels compared with control hydrogels during the first 3 days of infection. Studies performed on human whole blood showed that blood coagulated more readily in the presence of AMP-hydrogels as compared to hydrogels without AMPs, indicating potential hemostatic activity. Overall, the results suggest that the combination of amphiphilic hydrogels with covalently bonded AMPs has potential to be used as antibacterial wound dressing material to reduce infections and promote hemostatic activity as an alternative to antibiotics or other antimicrobial agents, whose use should be restricted.
  •  
6.
  • Berg, Camilla, et al. (författare)
  • Amorphous Calcium Magnesium Phosphate Particles for Treatment of Dentin Hypersensitivity : A Mode of Action Study
  • 2020
  • Ingår i: ACS Biomaterials Science & Engineering. - : AMER CHEMICAL SOC. - 2373-9878. ; 6:6, s. 3599-3607
  • Tidskriftsartikel (refereegranskat)abstract
    • Occlusion of exposed dentin tubules may eliminate or reduce dentin hypersensitivity by hindering fluid movements within the tubules. In this study, the mode of action of spherical particles of amorphous calcium magnesium phosphate (180-440 nm in diameter) was studied. A degradation study of the particles in Tris-HCl buffer showed that the particles continuously released Ca2+, Mg2+, and phosphate, and XRD analysis revealed the formation of hydroxyapatite (HA) after 1 week. The occluding effect and efficacy of the spherical particles as an occluding agent were evaluated in an in vitro study. The ACMP particles were incorporated in a gel intended for at-home use and tested on extracted human molars. Application of the particles followed by incubation in artificial saliva resulted in occlusion of exposed tubules, and examination with SEM showed that the particles could penetrate the tubules down to 100 mu m from the dentin surface. Transformation of the particles into nanocrystalline HA-structures (nanoHA) was initiated at the dentin surface within 12 h of application, and tubule penetration of the particles, accompanied by further ion release and diffusion of ions, resulted in deep intratubular occlusion in the majority of the tubules within 3 days from application. NanoHA was tightly adhered to the tubule walls, filling the entire tubule volume after 7 days. The results of this study demonstrate the mode of action of the amorphous calcium magnesium phosphate particles in occluding exposed dentin tubules. Interaction with saliva and transformation of the particles within the tubules inducing further mineralization indicate that the particles may be used as an effective treatment to reduce dentin hypersensitivity.
  •  
7.
  •  
8.
  • Carville, N. Craig, et al. (författare)
  • Biocompatible Gold Nanoparticle Arrays Photodeposited on Periodically Proton Exchanged Lithium Niobate
  • 2016
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 2:8, s. 1351-1356
  • Tidskriftsartikel (refereegranskat)abstract
    • Photodeposition of silver nanoparticles onto chemically patterned lithium niobate having alternating lithium niobate and proton exchanged regions has been previously investigated. Here, the spatially defined photodeposition of gold nanoparticles onto periodically proton exchanged lithium niobate is demonstrated. It is shown that the location where the gold nanoparticles form can be tailored by altering the concentration of HAuCl4. This enables the possibility to sequentially deposit gold and silver in different locations to create bimetallic arrays. The cytocompatibility of photodeposited gold, silver, and bimetallic ferroelectric templates to osteoblast-like cells is also investigated. Gold samples provide significantly greater cell biocompatibility than silver samples. These results highlight a potential route for using photodeposited gold on lithium niobate as a template for applications in cellular biosensing.
  •  
9.
  • Chen, Jialin, et al. (författare)
  • Hydroxycamptothecin and substratum stiffness synergistically regulate fibrosis of human corneal fibroblasts
  • 2023
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 9:2, s. 959-967
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal fibrosis is a common outcome of inappropriate repair associated with trauma or ocular infection. Altered biomechanical properties with increased corneal stiffness is a feature of fibrosis that cause corneal opacities, resulting in severe visual impairment and even blindness. The present study aims to determine the effect of hydroxycamptothecin (HCPT) and matrix stiffness on transforming growth factor-β1 (TGF-β1)-induced fibrotic processes in human corneal fibroblasts (HTK cells). HTK cells were cultured on substrates with different stiffnesses ("soft", ∼261 kPa; "stiff", ∼2.5 × 103 kPa) and on tissue culture plastic (TCP, ∼106 kPa) and simultaneously treated with or without 1 μg/mL HCPT and 10 ng/mL TGF-β1. We found that HCPT induced decreased cell viability and antiproliferative effects on HTK cells. TGF-β1-induced expression of fibrosis-related genes (FN1, ACTA2) was reduced if the cells were simultaneously treated with HCPT. Substrate stiffness did not affect the expression of fibrosis-related genes. The TGF-β1 induced expression of FN1 on both soft and stiff substrates was reduced if cells were simultaneously treated with HCPT. However, this trend was not seen for ACTA2, i.e., the TGF-β1 induced expression of ACTA2 was not reduced by simultaneous treatment of HCPT in either soft or stiff substrate. Instead, HCPT treatment in the presence of TGF-β1 resulted in increased gene expression of keratocyte phenotype makers (LUM, KERA, AQP1, CHTS6) on both substrate stiffnesses. In addition, the protein expression of keratocyte phenotype makers LUM and ALDH3 was increased in HTK cells simultaneously treated with TGF-β1 and HCPT on stiff substrate as compared to control, i.e., without HCPT. In conclusion, we found that HCPT can reduce TGF-β1-induced fibrosis and promote the keratocyte phenotype in a substrate stiffness dependent manner. Thus, HCPT stimulation might be an approach to stimulate keratocytes in the appropriate healing stage to avoid or reverse fibrosis and achieve more optimal corneal wound healing.
  •  
10.
  • Chen, Jialin, et al. (författare)
  • Regulation of Keratocyte Phenotype and Cell Behavior by Substrate Stiffness
  • 2020
  • Ingår i: ACS Biomaterials Science & Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 6:9, s. 5162-5171
  • Tidskriftsartikel (refereegranskat)abstract
    • Corneal tissue engineering is an alternative way to solve the problem of lack of corneal donor tissue in corneal transplantation. Keratocytes with a normal phenotype and function in tissue-engineered cornea would be critical for corneal regeneration. Although the role of extracellular/substrate material stiffness is well-known for the regulation of the cell phenotype and cell behavior in many different cell types, its effects in keratocyte culture have not yet been thoroughly studied. This project studied the effect of substrate stiffness on the keratocyte phenotype marker expression and typical cell behavior (cell adhesion, proliferation, and migration), and the possible mechanisms involved. Human primary keratocytes were cultured on tissue culture plastic (TCP, similar to 10(6) kPa) or on plates with the stiffness equivalent of physiological human corneal stroma (25 kPa) or vitreous body (1 kPa). The expression of keratocyte phenotype markers, cell adhesion, proliferation, and migration were compared. The results showed that the stiffness of the substrate material regulates the phenotype marker expression and cell behavior of cultured keratocytes. Physiological corneal stiffness (25 kPa) superiorly preserved the cell phenotype when compared to the TCP and 1 kPa group. Keratocytes had a larger cell area when cultured on 25 kPa plates as compared to on TCP. Treatment of cells with NSC 23766 (Rac1 inhibitor) mimicked the response in the cell phenotype and behavior seen in the transition from soft materials to stiff materials, including the cytoskeletal structure, expression of keratocyte phenotype markers, and cell behavior. In conclusion, this study shows that substrate stiffness regulates the cell phenotype marker expression and cell behavior of keratocytes by Rac1-mediated cytoskeletal reorganization. This knowledge contributes to the development of corneal tissue engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
Typ av publikation
tidskriftsartikel (40)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (43)
Författare/redaktör
Thomsen, Peter, 1953 (3)
Zhang, Wei (3)
Persson, Cecilia (3)
Zhivotovsky, B (2)
Johansson, J (2)
Engqvist, Håkan (2)
visa fler...
Isaksson, Hanna (2)
Palmquist, Anders, 1 ... (2)
Kondo, T. (1)
Zhang, R. (1)
Li, X. (1)
Taylor, C. (1)
Yang, Z. (1)
Agarwal, T (1)
Vosough, M (1)
Gatenholm, Paul, 195 ... (1)
Abbaszad Rafi, Abdol ... (1)
Hamidi, N. (1)
Bashir-Hashemi, A. (1)
Mahkam, M. (1)
Becker, H. (1)
Liu, Yang (1)
Pradhan, S (1)
Sun, Y (1)
Chen, GF (1)
Rising, Anna (1)
Ramström, Olof (1)
Das, Oisik (1)
Neisiany, Rasoul Esm ... (1)
Tenje, Maria (1)
Rutland, Mark W (1)
Tägil, Magnus (1)
Lund, Mikael (1)
Berggren, Per-Olof (1)
Kurtz, A (1)
Branstrom, R (1)
Saavedra, SS (1)
Aspinwall, CA (1)
Kölby, Lars, 1963 (1)
Johansson, Sofia (1)
Blunn, Gordon (1)
Griffith, May (1)
Zhang, Qiong (1)
Wang, Hui (1)
Lopes, Viviana (1)
Hossein-khannazer, N (1)
Trobos, Margarita, 1 ... (1)
Kopeina, GS (1)
Manzo, Michele (1)
Rodriguez, Brian J. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (13)
Uppsala universitet (9)
Karolinska Institutet (9)
Göteborgs universitet (7)
Linköpings universitet (5)
Umeå universitet (3)
visa fler...
Chalmers tekniska högskola (3)
RISE (3)
Lunds universitet (2)
Luleå tekniska universitet (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (43)
Forskningsämne (UKÄ/SCB)
Teknik (21)
Medicin och hälsovetenskap (20)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy