SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2504 3161 OR L773:2504 3188 "

Sökning: L773:2504 3161 OR L773:2504 3188

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferguson, Lynnette R., et al. (författare)
  • Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition : Part 1 - Fields of Precision Nutrition
  • 2016
  • Ingår i: Journal of Nutrigenetics and Nutrigenomics. - : S. Karger AG. - 1661-6499. ; 9:1, s. 12-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Diversity in the genetic profile between individuals and specific ethnic groups affects nutrient requirements, metabolism and response to nutritional and dietary interventions. Indeed, individuals respond differently to lifestyle interventions (diet, physical activity, smoking, etc.). The sequencing of the human genome and subsequent increased knowledge regarding human genetic variation is contributing to the emergence of personalized nutrition. These advances in genetic science are raising numerous questions regarding the mode that precision nutrition can contribute solutions to emerging problems in public health, by reducing the risk and prevalence of nutrition-related diseases. Current views on personalized nutrition encompass omics technologies (nutrigenomics, transcriptomics, epigenomics, foodomics, metabolomics, metagenomics, etc.), functional food development and challenges related to legal and ethical aspects, application in clinical practice, and population scope, in terms of guidelines and epidemiological factors. In this context, precision nutrition can be considered as occurring at three levels: (1) conventional nutrition based on general guidelines for population groups by age, gender and social determinants; (2) individualized nutrition that adds phenotypic information about the person's current nutritional status (e.g. anthropometry, biochemical and metabolic analysis, physical activity, among others), and (3) genotype-directed nutrition based on rare or common gene variation. Research and appropriate translation into medical practice and dietary recommendations must be based on a solid foundation of knowledge derived from studies on nutrigenetics and nutrigenomics. A scientific society, such as the International Society of Nutrigenetics/Nutrigenomics (ISNN), internationally devoted to the study of nutrigenetics/nutrigenomics, can indeed serve the commendable roles of (1) promoting science and favoring scientific communication and (2) permanently working as a 'clearing house' to prevent disqualifying logical jumps, correct or stop unwarranted claims, and prevent the creation of unwarranted expectations in patients and in the general public. In this statement, we are focusing on the scientific aspects of disciplines covering nutrigenetics and nutrigenomics issues. Genetic screening and the ethical, legal, social and economic aspects will be dealt with in subsequent statements of the Society.
  •  
2.
  • Kohlmeier, Martin, et al. (författare)
  • Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition : Part 2 - Ethics, Challenges and Endeavors of Precision Nutrition
  • 2016
  • Ingår i: Journal of Nutrigenetics and Nutrigenomics. - : S. Karger AG. - 1661-6499. ; 9:1, s. 28-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrigenetics considers the influence of individual genetic variation on differences in response to dietary components, nutrient requirements and predisposition to disease. Nutrigenomics involves the study of interactions between the genome and diet, including how nutrients affect the transcription and translation process plus subsequent proteomic and metabolomic changes, and also differences in response to dietary factors based on the individual genetic makeup. Personalized characteristics such as age, gender, physical activity, physiological state and social status, and special conditions such as pregnancy and risk of disease can inform dietary advice that more closely meets individual needs. Precision nutrition has a promising future in treating the individual according to their phenotype and genetic characteristics, aimed at both the treatment and prevention of disease. However, many aspects are still in progress and remain as challenges for the future of nutrition. The integration of the human genotype and microbiome needs to be better understood. Further advances in data interpretation tools are also necessary, so that information obtained through newer tests and technologies can be properly transferred to consumers. Indeed, precision nutrition will integrate genetic data with phenotypical, social, cultural and personal preferences and lifestyles matters to provide a more individual nutrition, but considering public health perspectives, where ethical, legal and policy aspects need to be defined and implemented.
  •  
3.
  • Kuttner, C. S., et al. (författare)
  • Four-Week Omega-3 Supplementation in Carriers of the Prosteatotic PNPLA3 p.I148M Genetic Variant: An Open-Label Study
  • 2019
  • Ingår i: Lifestyle Genomics. - : S. Karger AG. - 2504-3161 .- 2504-3188. ; 12:1-6, s. 10-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: The PNPLA3 loss-of-function variant p.I148M is a strong genetic determinant of nonalcoholic fatty liver disease. The PNPLA3 protein functions as an intracellular lipase in the liver, with a greater activity on unsaturated fatty acids. This study aimed to determine whether short-term supplementation with omega-3 fatty acids impacts hepatic steatosis differently in PNPLA3 p.148I wild-type individuals as compared to homozygous carriers of the PNPLA3 p.148M variant. Methods: Twenty subjects with hepatic steatosis (50% women, age 18–77 years) were included. Ten subjects homozygous for the PNPLA3 148M variant were matched to 10 wild-type individuals. The subjects received 4 g omega-3 fatty acids (1,840 mg eicosapentaenoic acid and 1,520 mg docosahexaenoic acid) a day for 4 weeks. Transient elastography with a controlled attenuation parameter (CAP) was used to quantify liver fat before and after the intervention. Body composition, fibrosis, liver function tests, serum free fatty acids (FFA) and glucose markers were compared. Results: Patients homozygous for the PNPLA3 p.148M variant (risk group) demonstrated no significant changes in CAP compared to baseline (284 ± 55 vs. 287 ± 65 dB/m) as did the control group (256 ± 56 vs. 262 ± 55 dB/m). While serum liver enzyme activities remained unchanged in both groups, the risk group displayed significantly (p = 0.02) lower baseline FFA concentrations (334.5 [range 281.0–431.0] vs. 564.5 [range 509.0–682.0] μmol/L), which markedly increased by 9.1% after the intervention. In contrast, FFA concentrations decreased significantly (p = 0.01) by 28.3% in the wild-type group. Conclusions: Short-term omega-3 fatty acid supplementation did not significantly alter hepatic steatosis. The nutrigenomic and metabolic effects of omega-3 fatty acids should be investigated further in carriers of the PNPLA3 148M risk variant.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy