SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2522 5820 "

Sökning: L773:2522 5820

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algeri, Sara, et al. (författare)
  • Searching for new phenomena with profile likelihood ratio tests
  • 2020
  • Ingår i: Nature reviews physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 2:5, s. 245-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Likelihood ratio tests are standard statistical tools used in particle physics to perform tests of hypotheses. The null distribution of the likelihood ratio test statistic is often assumed to be chi (2), following Wilks' theorem. However, in many circumstances relevant to modern experiments this theorem is not applicable. In this Expert Recommendation, we overview practical ways to identify these situations and provide guidelines on how to construct valid inference. We use examples from particle physics, but the statistical constructs discussed here can be used in any scientific discipline that relies on data analysis. This Expert Recommendation provides a guide to identifying practical situations where the likelihood ratio test statistic cannot be approximated by a chi (2) distribution and proposes adequate solutions.
  •  
2.
  • Bergmann, Uwe, et al. (författare)
  • Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes
  • 2021
  • Ingår i: NATURE REVIEWS PHYSICS. - : Springer Nature. - 2522-5820. ; 3:4, s. 264-282
  • Forskningsöversikt (refereegranskat)abstract
    • X-ray lasers offer unprecedented capabilities, with their tunable, intense and short X-ray pulses. This Technical Review discusses the current and future use of X-ray lasers for probing molecular catalysts and metalloenzymes and their chemical reactions in real time and under functional conditions. The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
  •  
3.
  • Chergui, Majed, et al. (författare)
  • Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy
  • 2023
  • Ingår i: Nature reviews physics. - 2522-5820. ; :5, s. 578-596
  • Forskningsöversikt (refereegranskat)abstract
    • Free-electron lasers and high-harmonic-generation table-top systems are new sources of extreme-ultraviolet to hard X-ray photons, providing ultrashort pulses that are intense, coherent and tunable. They are enabling a broad range of nonlinear optical and spectroscopic methods at short wavelengths, similar to those developed in the terahertz to ultraviolet regimes over the past 60 years. The extreme-ultraviolet to X-ray wavelengths access core transitions that can provide element and orbital selectivity, structural resolution down to the sub-nanometre scale and, for some methods, high momentum transfers across typical Brillouin zones; the possibilities for polarization control and sub-femtosecond time resolution are opening up new frontiers in research. In this Roadmap, we review the emergence of this field over the past 10 years or so, covering methods such as sum or difference frequency generation and second-harmonic generation, two-photon absorption, stimulated emission or Raman spectroscopy and transient grating spectroscopy. We then discuss the unique opportunities provided by these techniques for probing elementary dynamics in a wide variety of systems. X-ray free-electron lasers and high-harmonic-generation sources of extreme-ultraviolet (EUV) to hard X-ray photons deliver intense ultrashort pulses and enable the extension of nonlinear methods to much shorter wavelengths.EUV to X-ray wavelengths access core transitions that can provide element and orbital selectivity. These wavelengths also achieve sub-nanometre structural resolution and high momentum transfer, with femtosecond and attosecond time resolution.Nonlinear EUV/X-ray methods that have emerged include sum or difference frequency generation, parametric down-conversion, second-harmonic generation, two-photon absorption, stimulated emission or Raman spectroscopy and transient grating spectroscopy.Nonlinear EUV/X-ray science is developing hand-in-hand with instrumentation, to improve pulse features and enhance accessibility with the use of table-top systems or compact accelerators.These techniques offer unique opportunities for probing dynamical events in a wide variety of systems, including surface and interface processes, chirality, nanoscale transport and multidimensional core-level spectroscopy. New sources of extreme-ultraviolet to hard X-ray photons have enabled a wide range of short-wavelength nonlinear optical and spectroscopic methods over the past decade, and, for the future, offer unique opportunities to probe elementary dynamics in various systems.
  •  
4.
  • Frisk Kockum, Anton, 1987, et al. (författare)
  • Ultrastrong coupling between light and matter
  • 2019
  • Ingår i: Nature Reviews Physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 1:1, s. 19-40
  • Forskningsöversikt (refereegranskat)abstract
    • Light-matter coupling with strength comparable to the bare transition frequencies of the system is called ultrastrong. This Review surveys how experiments have realized ultrastrong coupling in the past decade, the new phenomena predicted in this regime and the applications it enables. AbstractUltrastrong coupling between light and matter has, in the past decade, transitioned from a theoretical idea to an experimental reality. It is a new regime of quantum light-matter interaction, which goes beyond weak and strong coupling to make the coupling strength comparable to the transition frequencies in the system. The achievement of weak and strong coupling has led to increased control of quantum systems and to applications such as lasers, quantum sensing, and quantum information processing. Here we review the theory of quantum systems with ultrastrong coupling, discussing entangled ground states with virtual excitations, new avenues for nonlinear optics, and connections to several important physical models. We also overview the multitude of experimental setups, including superconducting circuits, organic molecules, semiconductor polaritons, and optomechanical systems, that have now achieved ultrastrong coupling. We conclude by discussing the many potential applications that these achievements enable in physics and chemistry. Key pointsUltrastrong coupling (USC) can be achieved by coupling many dipoles to light, or by using degrees of freedom whose coupling is not bounded by the smallness of the fine-structure constant.The highest light-matter coupling strengths have been measured in experiments with Landau polaritons in semiconductor systems and in setups with superconducting quantum circuits.With USC, standard approximations break down, allowing processes that do not conserve the number of excitations in the system, leading to a ground state that contains virtual excitations.Potential applications of USC include fast and protected quantum information processing, nonlinear optics, modified chemical reactions and the enhancement of various quantum phenomena.Now that USC has been reached in several systems, it is time to experimentally explore the new phenomena predicted for this regime and to find their useful applications.
  •  
5.
  • Huerta, E. A., et al. (författare)
  • Enabling real-time multi-messenger astrophysics discoveries with deep learning
  • 2019
  • Ingår i: Nature reviews physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 1:10, s. 600-608
  • Forskningsöversikt (refereegranskat)abstract
    • Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics. A group of experts suggests ways in which deep learning can be used to enhance the potential for discovery in multi-messenger astrophysics.
  •  
6.
  • Michaels, Thomas C.T., et al. (författare)
  • Amyloid formation as a protein phase transition
  • 2023
  • Ingår i: Nature Reviews Physics. - 2522-5820. ; 5:7, s. 379-397
  • Forskningsöversikt (refereegranskat)abstract
    • The formation of amyloid fibrils is a general class of protein self-assembly behaviour, which is associated with both functional biology and the development of a number of disorders, such as Alzheimer and Parkinson diseases. In this Review, we discuss how general physical concepts from the study of phase transitions can be used to illuminate the fundamental mechanisms of amyloid self-assembly. We summarize progress in the efforts to describe the essential biophysical features of amyloid self-assembly as a nucleation-and-growth process and discuss how master equation approaches can reveal the key molecular pathways underlying this process, including the role of secondary nucleation. Additionally, we outline how non-classical aspects of aggregate formation involving oligomers or biomolecular condensates have emerged, inspiring developments in understanding, modelling and modulating complex protein assembly pathways. Finally, we consider how these concepts can be applied to kinetics-based drug discovery and therapeutic design to develop treatments for protein aggregation diseases.
  •  
7.
  • Vinuesa, Ricardo, et al. (författare)
  • The transformative potential of machine learning for experiments in fluid mechanics
  • 2023
  • Ingår i: Nature Reviews Physics. - : Springer Nature. - 2522-5820. ; 5:9, s. 536-545
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of machine learning (ML) has rapidly advanced the state of the art in many fields of science and engineering, including experimental fluid dynamics, which is one of the original big-data disciplines. This Perspective article highlights several aspects of experimental fluid mechanics that stand to benefit from progress in ML, including augmenting the fidelity and quality of measurement techniques, improving experimental design and surrogate digital-twin models and enabling real-time estimation and control. In each case, we discuss recent success stories and ongoing challenges, along with caveats and limitations, and outline the potential for new avenues of ML-augmented and ML-enabled experimental fluid mechanics.
  •  
8.
  • Weiskopf, Nikolaus, et al. (författare)
  • Quantitative magnetic resonance imaging of brain anatomy and in vivo histology
  • 2021
  • Ingår i: Nature Reviews Physics. - : Springer Science and Business Media LLC. - 2522-5820.
  • Forskningsöversikt (refereegranskat)abstract
    • Quantitative magnetic resonance imaging (qMRI) goes beyond conventional MRI, which aims primarily at local image contrast. It provides specific physical parameters related to the nuclear spin of protons in water, such as relaxation times. These parameters carry information about the local microstructural environment of the protons (such as myelin in the brain). Non- invasive in vivo histology using MRI (hMRI) aims to use this information to directly characterize biological tissue microstructure, partially replacing or complementing classical invasive histology. The understanding of MRI tissue contrast provided by hMRI is, in turn, crucial for further improvements of qMRI, and they should be considered closely interlinked. We discuss concepts, models and validation approaches, pointing out challenges and the latest advances in this field. Further, we point out links to physics, including computational and analytical approaches and developments in materials science and photonics, that aid in reference data acquisition and model validation.
  •  
9.
  • Weissenbilder, R., et al. (författare)
  • How to optimize high-order harmonic generation in gases
  • 2022
  • Ingår i: Nature Reviews Physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 4:11, s. 713-722
  • Tidskriftsartikel (refereegranskat)abstract
    • High-order harmonic generation (HHG) in gases leads to short-pulse extreme ultraviolet (XUV) radiation that is useful in a number of applications, such as attosecond science and nanoscale imaging. However, this process depends on many parameters, and there is still no consensus on how to choose the target geometry to optimize the source efficiency. We review the physics of HHG with emphasis on the macroscopic aspects of the nonlinear interaction, discussing the influence of length of medium, pressure, and intensity of the driving laser on the HHG conversion efficiency. Efficient HHG can be realized over a large range of pressures and medium lengths, if these follow a certain hyperbolic equation. This explains the large versatility in gas target designs for efficient HHG and provides design guidance for future high-flux XUV sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy