SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2524 4671 "

Sökning: L773:2524 4671

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bensch, Hanna, et al. (författare)
  • Bacteroidetes to Firmicutes : captivity changes the gut microbiota composition and diversity in a social subterranean rodent
  • 2023
  • Ingår i: Animal Microbiome. - : BioMed Central (BMC). - 2524-4671. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn mammals, the gut microbiota has important effects on the health of their hosts. Recent research highlights that animal populations that live in captivity often differ in microbiota diversity and composition from wild populations. However, the changes that may occur when animals move to captivity remain difficult to predict and factors generating such differences are poorly understood. Here we compare the bacterial gut microbiota of wild and captive Damaraland mole-rats (Fukomys damarensis) originating from a population in the southern Kalahari Desert to characterise the changes of the gut microbiota that occur from one generation to the next generation in a long-lived, social rodent species.ResultsWe found a clear divergence in the composition of the gut microbiota of captive and wild Damaraland mole-rats. Although the dominating higher-rank bacterial taxa were the same in the two groups, captive animals had an increased ratio of relative abundance of Firmicutes to Bacteroidetes compared to wild animals. The Amplicon Sequence Variants (ASVs) that were strongly associated with wild animals were commonly members of the same bacterial families as those strongly associated with captive animals. Captive animals had much higher ASV richness compared to wild-caught animals, explained by an increased richness within the Firmicutes.ConclusionWe found that the gut microbiota of captive hosts differs substantially from the gut microbiota composition of wild hosts. The largest differences between the two groups were found in shifts in relative abundances and diversity of Firmicutes and Bacteroidetes.
  •  
2.
  • Keating, C., et al. (författare)
  • Temporal changes in the gut microbiota in farmed Atlantic cod (Gadus morhua) outweigh the response to diet supplementation with macroalgae
  • 2021
  • Ingår i: Animal Microbiome. - : Springer Science and Business Media LLC. - 2524-4671. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Aquaculture successfully meets global food demands for many fish species. However, aquaculture production of Atlantic cod (Gadus morhua) is just 2.5% of total market production. For cod farming to be a viable economic venture specific challenges on how to increase growth, health and farming productivity need to be addressed. Feed ingredients play a key role here. Macroalgae (seaweeds) have been suggested as a functional feed supplement with both health and economic benefits for terrestrial farmed animals and fish. The impact of such dietary supplements to cod gut integrity and microbiota, which contribute to overall fish robustness is unknown. The objective of this study was to supplement the diet of juvenile Atlantic cod with macroalgae and determine the impacts on fish condition and growth, gut morphology and hindgut microbiota composition (16S rRNA amplicon sequencing). Fish were fed one of three diets: control (no macroalgal inclusion), 10% inclusion of either egg wrack (Ascophyllum nodosum) or sea lettuce (Ulva rigida) macroalgae in a 12-week trial. Results The results demonstrated there was no significant difference in fish condition, gut morphology or hindgut microbiota between the U. rigida supplemented fish group and the control group at any time-point. This trend was not observed with the A. nodosum treatment. Fish within this group were further categorised as either 'Normal' or 'Lower Growth'. 'Lower Growth' individuals found the diet unpalatable resulting in reduced weight and condition factor combined with an altered gut morphology and microbiome relative to the other treatments. Excluding this group, our results show that the hindgut microbiota was largely driven by temporal pressures with the microbial communities becoming more similar over time irrespective of dietary treatment. The core microbiome at the final time-point consisted of the orders Vibrionales (Vibrio and Photobacterium), Bacteroidales (Bacteroidetes and Macellibacteroides) and Clostridiales (Lachnoclostridium). Conclusions Our study indicates that U. rigida macroalgae can be supplemented at 10% inclusion levels in the diet of juvenile farmed Atlantic cod without any impact on fish condition or hindgut microbial community structure. We also conclude that 10% dietary inclusion of A. nodosum is not a suitable feed supplement in a farmed cod diet.
  •  
3.
  • Wanelik, Klara M., et al. (författare)
  • Maternal transmission gives way to social transmission during gut microbiota assembly in wild mice
  • 2023
  • Ingår i: ANIMAL MICROBIOME. - : Springer Nature. - 2524-4671. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The mammalian gut microbiota influences a wide array of phenotypes which are relevant to fitness, yet knowledge about the transmission routes by which gut microbes colonise hosts in natural populations remains limited. Here, we use an intensively studied wild population of wood mice (Apodemus sylvaticus) to examine how vertical (maternal) and horizontal (social) transmission routes influence gut microbiota composition throughout life.Results: We identify independent signals of maternal transmission (sharing of taxa between a mother and her offspring) and social transmission (sharing of taxa predicted by the social network), whose relative magnitudes shift as hosts age. In early life, gut microbiota composition is predicted by both maternal and social relationships, but by adulthood the impact of maternal transmission becomes undetectable, leaving only a signal of social transmission. By exploring which taxa drive the maternal transmission signal, we identify a candidate maternally-transmitted bacterial family in wood mice, the Muribaculaceae.Conclusion: Overall, our findings point to an ontogenetically shifting transmission landscape in wild mice, with a mother's influence on microbiota composition waning as offspring age, while the relative impact of social contacts grows.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy