SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2575 1077 "

Sökning: L773:2575 1077

  • Resultat 1-10 av 58
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afanasyeva, Elena A., et al. (författare)
  • Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma
  • 2021
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
  •  
2.
  • Ait-Saada, A, et al. (författare)
  • Chromatin remodeler Fft3 plays a dual role at blocked DNA replication forks
  • 2019
  • Ingår i: Life science alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we investigate the function of fission yeast Fun30/Smarcad1 family of SNF2 ATPase-dependent chromatin remodeling enzymes in DNA damage repair. There are three Fun30 homologues in fission yeast, Fft1, Fft2, and Fft3. We find that only Fft3 has a function in DNA repair and it is needed for single-strand annealing of an induced double-strand break. Furthermore, we use an inducible replication fork barrier system to show that Fft3 has two distinct roles at blocked DNA replication forks. First, Fft3 is needed for the resection of nascent strands, and second, it is required to restart the blocked forks. The latter function is independent of its ATPase activity.
  •  
3.
  • Ambikan, Anoop T., et al. (författare)
  • Genome-scale metabolic models for natural and long-term drug-induced viral control in HIV infection
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-scale metabolic models (GSMMs) can provide novel insights into metabolic reprogramming during disease progression and therapeutic interventions. We developed a context-specific system-level GSMM of people living with HIV (PLWH) using global RNA sequencing data from PBMCs with suppressive viremia either by natural (elite controllers, PLWHEC) or drug-induced (PLWHART) control. This GSMM was compared with HIV-negative controls (HC) to provide a comprehensive systems-level metabo-transcriptomic characterization. Transcriptomic analysis identified up-regulation of oxidative phosphorylation as a characteristic of PLWHART, differentiating them from PLWHEC with dysregulated complexes I, III, and IV. The flux balance analysis identified altered flux in several intermediates of glycolysis including pyruvate, a-ketoglutarate, and glutamate, among others, in PLWHART. The in vitro pharmacological inhibition of OXPHOS complexes in a latent lymphocytic cell model (J-Lat 10.6) suggested a role for complex IV in latency reversal and immunosenescence. Furthermore, inhibition of complexes I/III/IV induced apoptosis, collectively indicating their contribution to reservoir dynamics.
  •  
4.
  • Armenteros, Jose Juan Almagro, et al. (författare)
  • Detecting sequence signals in targeting peptides using deep learning
  • 2019
  • Ingår i: Life Science Alliance. - : LIFE SCIENCE ALLIANCE LLC. - 2575-1077. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In bioinformatics, machine learning methods have been used to predict features embedded in the sequences. In contrast to what is generally assumed, machine learning approaches can also provide new insights into the underlying biology. Here, we demonstrate this by presenting TargetP 2.0, a novel state-of-the-art method to identify N-terminal sorting signals, which direct proteins to the secretory pathway, mitochondria, and chloroplasts or other plastids. By examining the strongest signals from the attention layer in the network, we find that the second residue in the protein, that is, the one following the initial methionine, has a strong influence on the classification. We observe that two-thirds of chloroplast and thylakoid transit peptides have an alanine in position 2, compared with 20% in other plant proteins. We also note that in fungi and single-celled eukaryotes, less than 30% of the targeting peptides have an amino acid that allows the removal of the N-terminal methionine compared with 60% for the proteins without targeting peptide. The importance of this feature for predictions has not been highlighted before.
  •  
5.
  • Asplund, Olof, et al. (författare)
  • Islet Gene View-a tool to facilitate islet research
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (GCG, 56%), amylin (IAPP, 52%), insulin (INS, 44%), and somatostatin (SST, 24%). Inhibition of two DEGs, UNC5D and SERPINE2, impaired glucose-stimulated insulin secretion and impacted cell survival in a human beta-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.
  •  
6.
  • Batté, Amandine, et al. (författare)
  • Chl1 helicase controls replication fork progression by regulating dNTP pools
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.
  •  
7.
  • Bauer, Susanne, et al. (författare)
  • Translatome profiling in fatal familial insomnia implicates TOR signaling in somatostatin neurons
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Allience. - 2575-1077. ; 5:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective neuronal vulnerability is common in neurodegenerative diseases but poorly understood. In genetic prion diseases, in-cluding fatal familial insomnia (FFI) and Creutzfeldt-Jakob dis-ease (CJD), different mutations in the Prnp gene manifest as clinically and neuropathologically distinct diseases. Here we report with electroencephalography studies that theta waves are mildly increased in 21 mo old knock-in mice modeling FFI and CJD and that sleep is mildy affected in FFI mice. To define affected cell types, we analyzed cell type-specific translatomes from six neuron types of 9 mo old FFI and CJD mice. Somatostatin (SST) neurons responded the strongest in both diseases, with unex-pectedly high overlap in genes and pathways. Functional analyses revealed up-regulation of neurodegenerative disease pathways and ribosome and mitochondria biogenesis, and down-regulation of synaptic function and small GTPase-mediated signaling in FFI, implicating down-regulation of mTOR signaling as the root of these changes. In contrast, responses in glutamatergic cerebellar neurons were disease-specific. The high similarity in SST neurons of FFI and CJD mice suggests that a common therapy may be beneficial for multiple genetic prion diseases.
  •  
8.
  • Blum, Matthias, et al. (författare)
  • A comprehensive resource for retrieving, visualizing, and integrating functional genomics data
  • 2020
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The enormous amount of freely accessible functional genomics data is an invaluable resource for interrogating the biological function of multiple DNA-interacting players and chromatin modifications by large-scale comparative analyses. However, in practice, interrogating large collections of public data requires major efforts for (i) reprocessing available raw reads, (ii) incorporating quality assessments to exclude artefactual and low-quality data, and (iii) processing data by using high-performance computation. Here, we present qcGenomics, a user-friendly online resource for ultrafast retrieval, visualization, and comparative analysis of tens of thousands of genomics datasets to gain new functional insight from global or focused multidimensional data integration. © 2019 Blum et al.
  •  
9.
  • Bogaert, Annelies, et al. (författare)
  • N-terminal proteoforms may engage in different protein complexes
  • 2023
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 6:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative translation initiation and alternative splicing may give rise to N-terminal proteoforms, proteins that differ at their N-terminus compared with their canonical counterparts. Such proteoforms can have altered localizations, stabilities, and functions. Although proteoforms generated from splice variants can be engaged in different protein complexes, it remained to be studied to what extent this applies to N-terminal proteoforms. To address this, we mapped the interactomes of several pairs of N-terminal proteoforms and their canonical counterparts. First, we generated a catalogue of N-terminal proteoforms found in the HEK293T cellular cytosol from which 22 pairs were selected for interactome profiling. In addition, we provide evidence for the expression of several N-terminal proteoforms, identified in our catalogue, across different human tissues, as well as tissue-specific expression, highlighting their biological relevance. Protein–protein interaction profiling revealed that the overlap of the interactomes for both proteoforms is generally high, showing their functional relation. We also showed that N-terminal proteoforms can be engaged in new interactions and/or lose several interactions compared with their canonical counterparts, thus further expanding the functional diversity of proteomes.
  •  
10.
  • Bonekamp, NA, et al. (författare)
  • High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo
  • 2021
  • Ingår i: Life science alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 58

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy