SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2575 9108 "

Sökning: L773:2575 9108

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bocci, G., et al. (författare)
  • Virtual and in Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19
  • 2020
  • Ingår i: ACS Pharmacology and Translational Science. - : American Chemical Society (ACS). - 2575-9108. ; 3:6, s. 1278-1292
  • Tidskriftsartikel (refereegranskat)abstract
    • The urgent need for a cure for early phase COVID-19 infected patients critically underlines drug repositioning strategies able to efficiently identify new and reliable treatments by merging computational, experimental, and pharmacokinetic expertise. Here we report new potential therapeutics for COVID-19 identified with a combined virtual and experimental screening strategy and selected among already approved drugs. We used hydroxychloroquine (HCQ), one of the most studied drugs in current clinical trials, as a reference template to screen for structural similarity against a library of almost 4000 approved drugs. The top-ranked drugs, based on structural similarity to HCQ, were selected for in vitro antiviral assessment. Among the selected drugs, both zuclopenthixol and nebivolol efficiently block SARS-CoV-2 infection with EC50 values in the low micromolar range, as confirmed by independent experiments. The anti-SARS-CoV-2 potential of ambroxol, amodiaquine, and its active metabolite (N-monodesethyl amodiaquine) is also discussed. In trying to understand the "hydroxychloroquine"mechanism of action, both pKa and the HCQ aromatic core may play a role. Further, we show that the amodiaquine metabolite and, to a lesser extent, zuclopenthixol and nebivolol are active in a SARS-CoV-2 titer reduction assay. Given the need for improved efficacy and safety, we propose zuclopenthixol, nebivolol, and amodiaquine as potential candidates for clinical trials against the early phase of the SARS-CoV-2 infection and discuss their potential use as adjuvant to the current (i.e., remdesivir and favipiravir) COVID-19 therapeutics. © 2020 American Chemical Society. All rights reserved.
  •  
2.
  • Dahlgren, Claes, 1949, et al. (författare)
  • Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions
  • 2020
  • Ingår i: ACS Pharmacology and Translational Science. - : American Chemical Society (ACS). - 2575-9108. ; 3:2, s. 203-220
  • Forskningsöversikt (refereegranskat)abstract
    • Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects. © 2020 American Chemical Society.
  •  
3.
  •  
4.
  • Gossen, Jonas, et al. (författare)
  • A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics
  • 2021
  • Ingår i: ACS Pharmacology & Translational Science. - : American Chemical Society (ACS). - 2575-9108. ; 4:3, s. 1079-1095
  • Tidskriftsartikel (refereegranskat)abstract
    • The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of similar to 30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing similar to 200 virtual screenings of compound libraries on selected protein structures, we redefine the protein's druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.
  •  
5.
  •  
6.
  •  
7.
  • Kennedy, Amanda, et al. (författare)
  • Structural Characterization of Agonist Binding to Protease-Activated Receptor 2 through Mutagenesis and Computational Modeling
  • 2018
  • Ingår i: ACS Pharmacology & Translational Science. - : American Chemical Society (ACS). - 2575-9108. ; 1:2, s. 119-133
  • Tidskriftsartikel (refereegranskat)abstract
    • Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor that is activated by proteolytic cleavage of its N-terminus. The unmasked N-terminal peptide then binds to the transmembrane bundle, leading to activation of intracellular signaling pathways associated with inflammation and cancer. Recently determined crystal structures have revealed binding sites of PAR2 antagonists, but the binding mode of the peptide agonist remains unknown. In order to generate a model of PAR2 in complex with peptide SLIGKV, corresponding to the trypsin-exposed tethered ligand, the orthosteric binding site was probed by iterative combinations of receptor mutagenesis, agonist ligand modifications and data-driven structural modeling. Flexible-receptor docking identified a conserved binding mode for agonists related to the endogenous ligand that was consistent with the experimental data and allowed synthesis of a novel peptide (1-benzyl-1H[1,2,3]triazole-4-yl-LIGKV) with higher functional potency than SLIGKV. The final model may be used to understand the structural basis of PAR2 activation and in virtual screens to identify novel PAR2 agonist and competitive antagonists. The combined experimental and computational approach to characterize agonist binding to PAR2 can be extended to study the many other G protein-coupled receptors that recognize peptides or proteins.
  •  
8.
  •  
9.
  •  
10.
  • Machulkin, Aleksei E., et al. (författare)
  • Synthesis and Preclinical Evaluation of Urea-Based Prostate-Specific Membrane Antigen-Targeted Conjugates Labeled with 177Lu
  • 2024
  • Ingår i: ACS Pharmacology & Translational Science. - : American Chemical Society (ACS). - 2575-9108. ; 7:5, s. 1457-1473
  • Tidskriftsartikel (refereegranskat)abstract
    • 177Lu-labeled small-molecule prostate-specific membrane antigen (PSMA) targeted tracers are therapeutic agents for metastatic castration-resistant prostate cancer. Optimizing molecular design holds the potential to further enhance the pharmacokinetic properties of PSMA-targeted agents while preserving their potent therapeutic effects. In this study, six novel N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-l-lysine (DCL) urea-based PSMA ligand 2,2′,2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid conjugates were synthesized. These conjugates feature polypeptide linkers containing the Phe-Phe peptide sequence and an aromatic fragment at the ε-NH-Lys group of the DCL fragment. The synthesis yielded products with satisfactory yields ranging from 60% to 72%, paving the way for their preclinical evaluation. The labeling of the new variants of urea-based PSMA inhibitors provided a radiochemical yield of over 95%. The 177Lu-labeled conjugates demonstrated specific and moderate affinity binding to PSMA-expressing human cancer cells PC3-pip in vitro and specific accumulation in PSMA-expressing xenografts in vivo. Based on the results, both the lipophilicity and the type of substituent in the linker significantly influence the binding properties of the PSMA inhibitor and its biodistribution profile. Specifically, the studied variants containing a bromine substituent or a hydroxyl group introduced into the aromatic fragment of the phenylalanyl residue in DCL exhibit higher affinities to PSMA compared to variants with only a chlorine-substituted aromatic fragment or variants without any substituents. The [177Lu]Lu-13C with the bromine substituent was characterized by the highest activity accumulation in blood, salivary glands, muscle, bone, and gastrointestinal tract and had inasmuch as an unfavorable pharmacokinetic profile. The negative charge of the carboxyl group in the phenyl moiety of the [177Lu]Lu-13A variant has demonstrated a positive effect on reducing the retention of activity in the liver and the kidneys (the ratio of tumor to kidneys was 1.3-fold). Low accumulation in normal tissues in vivo indicates that this novel PSMA-targeting inhibitor is a promising radioligand.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy