SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2673 6187 "

Sökning: L773:2673 6187

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cauchy, P., et al. (författare)
  • Gliders for passive acoustic monitoring of the oceanic environment
  • 2023
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean gliders are quiet, buoyancy-driven, long-endurance, profiling autonomous platforms. Gliders therefore possess unique advantages as platforms for Passive Acoustic Monitoring (PAM) of the marine environment. In this paper, we review available glider platforms and passive acoustic monitoring systems, and explore current and potential uses of passive acoustic monitoring-equipped gliders for the study of physical oceanography, biology, ecology and for regulatory purposes. We evaluate limiting factors for passive acoustic monitoring glider surveys, such as platform-generated and flow noise, weight, size and energy constraints, profiling ability and slow movement. Based on data from 34 passive acoustic monitoring glider missions, it was found that <13% of the time spent at sea was unsuitable for passive acoustic monitoring measurements, either because of surface communications or glider manoeuvre, leaving the remainder available for subsequent analysis. To facilitate the broader use of passive acoustic monitoring gliders, we document best practices and include workarounds for the typical challenges of a passive acoustic monitoring glider mission. Three research priorities are also identified to improve future passive acoustic monitoring glider observations: 1) Technological developments to improve sensor integration and preserve glider endurance; 2) improved sampling methods and statistical analysis techniques to perform population density estimation from passive acoustic monitoring glider observations; and 3) calibration of the passive acoustic monitoring glider to record absolute noise levels, for anthropogenic noise monitoring. It is hoped this methodological review will assist glider users to broaden the observational capability of their instruments, and help researchers in related fields to deploy passive acoustic monitoring gliders in their studies.
  •  
2.
  • Kaminski, Thomas, et al. (författare)
  • Assessing the constraint of atmospheric CO2 and NO2 measurements from space on city-scale fossil fuel CO2 emissions in a data assimilation system
  • 2022
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Copernicus programme plans to install a constellation of multiple polar orbiting satellites (Copernicus Anthropogenic CO2 Monitoring Mission, CO2M mission) for observing atmospheric CO2 content with the aim to estimate fossil fuel CO2 emissions. We explore the impact of potential CO2M observations of column-averaged CO2 (XCO2), nitrogen dioxide (NO2), and aerosols in a 200 × 200 km2 domain around Berlin. For the quantification of anticipated XCO2 random and systematic errors we developed and applied new error parameterisation formulae based on artificial neural networks. For the interpretation of these data, we further established a CCFFDAS modelling chain from parameters of emission models to XCO2 and NO2 observations to simulate the 24 h periods preceeding simulated CO2M overpasses over the study area. For one overpass in winter and one in summer, we present a number of assessments of observation impact in terms of the posterior uncertainty in fossil fuel emissions on scales ranging from 2 to 200 km. This means the assessments include temporal and spatial scales typically not covered by inventories. The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call “other sector.” We find that combined measurements of XCO2 and aerosols provide a powerful constraint on emissions from larger power plants; the uncertainty in fossil fuel emissions from the largest three power plants in the domain was reduced by 60%–90% after assimilating the observations. Likewise, these measurements achieve an uncertainty reduction for the other sector that increases when aggregated to larger spatial scales. When aggregated over Berlin the uncertainty reduction for the other sector varies between 28% and 48%. Our assessments show a considerable contribution of aerosol observations onboard CO2M to the constraint of the XCO2 measurements on emissions from all power plants and for the other sector on all spatial scales. NO2 measurements onboard CO2M provide a powerful additional constraint on the emissions from power plants and from the other sector. We further apply a Jacobian representation of the CCFFDAS modelling chain to decompose a simulated CO2 column in terms of spatial emission impact. This analysis reveals the complex structure of the footprint of an observed CO2 column, which indicates the limits of simple mass balances approaches for interpretation of such observations.
  •  
3.
  • Kaminski, Thomas, et al. (författare)
  • Assessing the Impact of Atmospheric CO2 and NO2 Measurements From Space on Estimating City-Scale Fossil Fuel CO2 Emissions in a Data Assimilation System
  • 2022
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Copernicus programme plans to install a constellation of multiple polar orbiting satellites (Copernicus Anthropogenic CO2 Monitoring Mission, CO2M mission) for observing atmospheric CO2 content with the aim to estimate fossil fuel CO2 emissions. We explore the impact of potential CO2M observations of column-averaged CO2 (XCO2), nitrogen dioxide (NO2), and aerosols in a 200 × 200 km2 domain around Berlin. For the quantification of anticipated XCO2 random and systematic errors we developed and applied new error parameterisation formulae based on artificial neural networks. For the interpretation of these data, we further established a CCFFDAS modelling chain from parameters of emission models to XCO2 and NO2 observations to simulate the 24 h periods preceeding simulated CO2M overpasses over the study area. For one overpass in winter and one in summer, we present a number of assessments of observation impact in terms of the posterior uncertainty in fossil fuel emissions on scales ranging from 2 to 200 km. This means the assessments include temporal and spatial scales typically not covered by inventories. The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call “other sector.” We find that combined measurements of XCO2 and aerosols provide a powerful constraint on emissions from larger power plants; the uncertainty in fossil fuel emissions from the largest three power plants in the domain was reduced by 60%–90% after assimilating the observations. Likewise, these measurements achieve an uncertainty reduction for the other sector that increases when aggregated to larger spatial scales. When aggregated over Berlin the uncertainty reduction for the other sector varies between 28% and 48%. Our assessments show a considerable contribution of aerosol observations onboard CO2M to the constraint of the XCO2 measurements on emissions from all power plants and for the other sector on all spatial scales. NO2 measurements onboard CO2M provide a powerful additional constraint on the emissions from power plants and from the other sector. We further apply a Jacobian representation of the CCFFDAS modelling chain to decompose a simulated CO2 column in terms of spatial emission impact. This analysis reveals the complex structure of the footprint of an observed CO2 column, which indicates the limits of simple mass balances approaches for interpretation of such observations.
  •  
4.
  • Yadav, Ritu, et al. (författare)
  • Deep attentive fusion network for flood detection on uni-temporal Sentinel-1 data
  • 2022
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Floods are occurring across the globe, and due to climate change, flood events are expected to increase in the coming years. Current situations urge more focus on efficient monitoring of floods and detecting impacted areas. In this study, we propose two segmentation networks for flood detection on uni-temporal Sentinel-1 Synthetic Aperture Radar data. The first network is “Attentive U-Net”. It takes VV, VH, and the ratio VV/VH as input. The network uses spatial and channel-wise attention to enhance feature maps which help in learning better segmentation. “Attentive U-Net” yields 67% Intersection Over Union (IoU) on the Sen1Floods11 dataset, which is 3% better than the benchmark IoU. The second proposed network is a dual-stream “Fusion network”, where we fuse global low-resolution elevation data and permanent water masks with Sentinel-1 (VV, VH) data. Compared to the previous benchmark on the Sen1Floods11 dataset, our fusion network gave a 4.5% better IoU score. Quantitatively, the performance improvement of both proposed methods is considerable. The quantitative comparison with the benchmark method demonstrates the potential of our proposed flood detection networks. The results are further validated by qualitative analysis, in which we demonstrate that the addition of a low-resolution elevation and a permanent water mask enhances the flood detection results. Through ablation experiments and analysis we also demonstrate the effectiveness of various design choices in proposed networks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy