SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9780791843987 "

Sökning: L773:9780791843987

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grönstedt, Tomas, 1970, et al. (författare)
  • Optimizing the Operation of the Intercooled Turbofan Engine
  • 2010
  • Ingår i: ASME TURBO EXPO 2010 Proceedings, GT2010-22519. - 9780791843987 ; , s. 627-633
  • Konferensbidrag (refereegranskat)abstract
    • The performance of an intercooled turbofan engine is analysed by multidisciplinary optimization. A model for making preliminary simplified analysis of the mechanical design of the engine is coupled to an aircraft model and an engine performance model. A conventional turbofan engine with technology representative for a year 2020 entry of service engine is compared to a corresponding intercooled engine. A mission fuel burn reduction of 4.3% is observed. The results are analysed in terms of the relevant constraints such as compressor exit temperature, turbine entry temperature, turbine rotor blade temperature and compressor exit blade height. It is then shown that a separate variable exhaust nozzle mounted in conjunction with the intercooler together with a variable low pressure turbine may further improve the fuel burn benefit to 5.5%. Empirical data and a parametric CFD study is used to verify the intercooler heat transfer and pressure loss characteristics.
  •  
2.
  • Jonshagen, Klas, et al. (författare)
  • Optimal Combined Cycle For Co2 Capture With EGR
  • 2010
  • Ingår i: Proceedings Of The ASME Turbo Expo 2010, Volume 3: Controls, Diagnostics and Instrumentation; Cycle Innovations; Marine. - 9780791843987 ; 3, s. 867-875
  • Konferensbidrag (refereegranskat)abstract
    • Most state-of-the-art natural gas fired combined cycle (NGCC) plants are triple-pressure reheat cycles with efficiencies close to 60 percent. However, with carbon capture and storage, the efficiency will be penalized by almost 10 percent units. To limit the energy consumption for a carbon capture NGCC plant, exhaust gas recirculation (EGR) is necessary. Utilizing EGR increases the CO2 content in the gas turbine exhaust while it reduces the flue gas flow to be treated in the capture plant. Nevertheless, due to EGR, the gas turbine will experience a different: media with different properties compared to the design case. This study looks into how the turbo machinery reacts to EGR. The work also discusses the potential of further improvements by utilizing pressurized water rather than extraction steam as the heat source for the CO2 stripper. The results show that the required low-pressure level should be elevated to a point close to the intermediate-pressure to achieve optimum efficiency; hence one pressure level can be omitted. The main tool used for this study is an in-house off-design model based on fully dimensionless groups programmed in the commercially-available heat and mass balance program IPSEpro. The model is based on a GE 109FB machine with a triple-pressure reheat steam cycle.
  •  
3.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Assessment of Future Aero Engine Designs with Intercooled and Intercooled Recuperated Cores
  • 2010
  • Ingår i: ASME TURBO EXPO 2010 Proceedings, ASME-GT-2010-22519. - 9780791843987 ; , s. 909-920
  • Konferensbidrag (refereegranskat)abstract
    • Reduction in CO 2 emissions is strongly linked with the improvement of engine specific fuel consumption, as well as the reduction in engine nacelle drag and weight. Conventional turbofan designs, however, that reduce CO 2 emissions—such as increased overall pressure ratio designs—can increase the production of NO x emissions. In the present work, funded by the European Framework 6 collaborative project NEW Aero engine Core concepts (NEWAC), an aero-engine multidisciplinary design tool, Techno-economic, Environmental, and Risk Assessment for 2020 (TERA2020), has been utilized to study the potential benefits from introducing heat-exchanged cores in future turbofan engine designs. The tool comprises of various modules covering a wide range of disciplines: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and …
  •  
4.
  • Larsson, Emil, 1981-, et al. (författare)
  • Fault Isolation for an Industrial Gas Turbine with a Model-Based Diagnosis Approach
  • 2010
  • Ingår i: Proceedings of ASME Turbo Expo. - : ASME Press. - 9780791843987 ; , s. 89-98
  • Konferensbidrag (refereegranskat)abstract
    • Model based diagnosis and supervision of industrial gas turbines are studied. Monitoring of an industrial gas turbine is important as it gives valuable information for the customer about service performance and process health. The overall objective of the paper is to develop a systematic procedure for modelling and design of a model based diagnosis system, where each step in the process can be automated and implemented using available software tools. A new Modelica gas media library is developed, resulting in a significant model size reduction compared to if standard Modelica components are used. A systematic method is developed that, based on the diagnosis model, extracts relevant parts of the model and transforms it into a form suitable for standard observer design techniques. This method involves techniques from simulation of DAE models and a model reduction step. The size of the final diagnosis model is 20% of the original model size. Combining the modeling results with fault isolation techniques, simultaneous isolation of sensor faults and fault tolerant health parameter estimation is achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy