SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9781479947904 "

Sökning: L773:9781479947904

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brinkfeldt, Klas, et al. (författare)
  • Modeling of SiC power modules with double sided cooling
  • 2014
  • Ingår i: 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2014. - : IEEE Computer Society. - 9781479947904
  • Konferensbidrag (refereegranskat)abstract
    • Silicon Carbide (SiC) based transistor devices have demonstrated higher efficiency switching operation compared to silicon-based, state-of-the-art solutions due to the superior electrical and thermal properties of the SiC material. The improved current density and thermal conductivity allows SiC-based power modules to be smaller than their silicon counterparts for comparable current densities. The active chip area can be reduced further by effectively cooling the devices. In this work, a new power module including SiC bipolar junction transistors (BJT) and diodes and integrated double sided cooling will be introduced. The target application of these modules is a new drive-train system for commercial electric vehicles.
  •  
2.
  • Edwards, Michael, et al. (författare)
  • The shear strength of nano-Ag solders and the use of Ag interconnects in the design and manufacture of SiGe-based thermo-electric modules
  • 2014
  • Ingår i: 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2014. - : IEEE Computer Society. - 9781479947904
  • Konferensbidrag (refereegranskat)abstract
    • Thermo-electric modules can be used to convert heat into electricity by utilizing the Seeback effect. It is now possible to buy BiTe thermo-electric modules that can operate up to temperatures of around 300°C. However, many applications, such as the harvesting of exhaust gas from large vehicles or gas turbine heat, may occur at higher temperatures Therefore, new materials and manufacturing processes need to be developed to produce packaged TEM that can operate at a maximum operating temperature of 650°C. Two critical areas in the manufacture of a SiGe TEM are the choice and strength of materials used to both solder the TE material to the rest of the module and the metal used for the interconnects. The interconnection material needs to be sufficiently strong to withstand large temperature fluctuations while maintaining a low contact resistance, as well as being compatible with the nano-Ag solder. Shear force tests of the sintered thermo electrical leg material showed that the joints are brittle when sintered to W metallized AlN substrates are used and ductile fracture behavior when sintered to Cu metallized AlN substrates using the NanoTach K nano silver paste. Almost all of the joints were found to be brittle when using the NachTach X nano silver paste. Shear testing of the solder joints showed that the X paste joints were variable in strength and stiffness, having a typical Young's modulus between 10 and 100 MPa at room temperature. The K paste joints were stiffer, but had a similar strength as compared to the X paste joints.
  •  
3.
  • Sánchez-Soriano, Miguel Angel, et al. (författare)
  • Mutiphysics study of RF/microwave planar devices : Effect of the input signal power
  • 2014
  • Ingår i: 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2014. - : IEEE Computer Society. - 9781479947904
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, the effects of the input signal power on microwave planar devices are studied in detail. In this context, a complete multiphysics study is performed, involving the electro-thermo-mechanical coupling in microwave components. For this study, a multiphysics simulator is used. As shown, for moderate input powers, the device transfer function can be altered, mainly in terms of an increase of losses and a frequency shift. Additionally, hot spots are to be appeared, whose location is related to the electromagnetic field distribution of the passive device under test. Guidelines are also provided to estimate the average power handling capability (APHC) of planar components. As an example, the multiphysics analysis of a microstrip coupled-line filter centered at 42 GHz is tackled taken into account different thermal and mechanical boundary conditions.
  •  
4.
  • Zhang, Yafan, et al. (författare)
  • Investigation of a Finned Baseplate Material and Thickness Variation for Thermal Performance of a SiC Power Module
  • 2014
  • Ingår i: 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2014. - : IEEE Computer Society. - 9781479947904
  • Konferensbidrag (refereegranskat)abstract
    • A simplified transient computational fluid dynamics model of an automotive three-phase double-side liquid cooled silicon carbide power inverter, including pin-fin baseplates, has been developed and qualified for parametric studies. Effective heat transfer coefficients have been extracted from the detailed pin-fin baseplate model for two coolant volume flow rates 2 l/min and 6 l/min, at the coolant temperature 105 degrees C. The inverter model includes temperature dependent heat losses of SiC transistors and diodes, calculated for two driving cycles. Baseplate materials such as copper, aluminum-silicon carbide metal matrix composite, aluminium alloy 6061 as well as virtual materials have been evaluated in the parametric studies. Thermal conductivity, specific heat and density have been varied as well as thickness of the finned baseplates (1 to 3 mm). A trade-off between temperature of SiC chips and baseplate weight has been investigated by means of Pareto optimization. The main results of the parametric studies include a weak dependence (1 to 3 degrees C) of the chip temperature on baseplate thickness. Furthermore, switching e.g. between copper and AlSiC results in 5 to 8 degrees C increase of the chip temperature, at 65 to 70 % baseplate weight reduction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy