SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9781538668146 "

Sökning: L773:9781538668146

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Nan, et al. (författare)
  • Light-weight Compressible and Highly Thermal Conductive Graphene-based Thermal Interface Material
  • 2018
  • Ingår i: 2018 7th Electronic System-Integration Technology Conference (ESTC). - 9781538668146
  • Konferensbidrag (refereegranskat)abstract
    • High density packaging in combination with increased transistor integration inevitably leads to challenging power densities in terms of thermal management. Thermal interface materials (TIMs) play a key role in thermal management by transferring heat from the surface of power devices. The conventional TIMs used in the microelectronics industry today basically are particle laden polymer matrix composites, which have the advantages of good reliability and ease of use. However, the thermal conductivity (K) of these composites is generally limited to 10 W/mK, which is hard to meet the goal for efficient thermal management in power devices. Here, we solve the problem by applying a novel highly thermal conductive and compressible graphene based TIMs (GTs). Composed by vertical graphene structures, GTs provide a continuous high thermal conductivity phase along the path of thermal transport, which lead to outstanding thermal properties. By tailoring ratios of graphene in the polymer binder, bulk thermal conductivity of GTs can be varied from 50 to 1000 W/mK. This result isorders of magnitude higher than conventional TIMs, and even outperforms the pure indium TIMs by over ten times. Meanwhile, the highly flexible and foldable nature of vertical graphene enables at least 20% compressibility of the GTs upon small applied pressures (≤ 400 KPa). As excellent gap fillers, GT can provide complete physical contact between two surfaces and thereby minimize the contact resistance to heat flow. The measured minimum thermal resistance and maximum effective thermal conductivity for GTs reaches to ∼ Kmm2/W and ∼ W/mK, respectively. Such values are significantly higher than the randomly dispersed composites presented above, and show almost comparable thermal performance as pure indium bonding. In addition, the GTs has more advantages than indium/solder bonding, including low weight (density <2g/cm3), low complexity during assembly and maintainability. The resulting GTs thus opens new opportunities for addressing large heat dissipation issues both in through-plane and in-plane directions for form-factor driven electronics and other high power driven systems.
  •  
2.
  • Zehri, Abdelhafid, 1989, et al. (författare)
  • Low-Temperature Sintering Bimodal Micro Copper-Nano Silver for Electrical Power Devices
  • 2018
  • Ingår i: 2018 7th Electronic System-Integration Technology Conference (ESTC). - 9781538668146
  • Konferensbidrag (refereegranskat)abstract
    • Copper is generally considered as an electronic packaging material due to its good electrical, thermal properties and relatively low cost. However, copper needs high processing temperature, which negatively affects the electronics reliability. In this paper, silver nanoparticles sintering is evaluated for the propose to decrease the processing temperature of copper. Different fractions of silver nanoparticles were mixed with 10 ×m Cu powder and sintered at temperatures of 250°C, 300°C, 400°C and 500°C, under low pressures 4MPa and 8MPa, and a high pressure of 100MPa for comparison. Densities from 45% to 94% of the density of bulk Cu have been achieved while the thermal and electrical conductivities have been evaluated and reached a value of around 270W/m.K and 1.41×106 S/m.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
konferensbidrag (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Liu, Johan, 1960 (2)
Ye, L (2)
Chen, S. (1)
Wang, Nan (1)
Zehri, Abdelhafid, 1 ... (1)
Nkansah, Amos (1)
Lärosäte
Chalmers tekniska högskola (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)
Naturvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy