SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9783319894799 OR L773:9783319894805 "

Sökning: L773:9783319894799 OR L773:9783319894805

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Joel, 1981- (författare)
  • Review of Weldability of Precipitation Hardening Ni- and Fe-Ni-Based Superalloys
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer. - 9783319894799 - 9783319894805 ; , s. 899-916
  • Konferensbidrag (refereegranskat)abstract
    • Fabrication and welding of structural components for the hot section of aero-engines continues to be of high importance to the manufacturing industry of aero-engines. This paper discusses and reviews the literature on hot cracking and strain age cracking, cracking phenomena that can occur during welding or subsequent heat treatment of precipitation hardened Ni- and Fe-Ni-based superalloys. The influence of chemical composition in terms of i.e. hardening elements and impurities, microstructure of base material and weld zone, together with welding processes and corresponding parameters and heat input are discussed and related to the cracking susceptibility of different nickel based superalloys.
  •  
2.
  • Asala, G., et al. (författare)
  • Microstructure Dependence of Dynamic Impact Behaviour of ATI 718plus® Superalloy
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer. - 9783319894799 - 9783319894805 ; , s. 369-378
  • Konferensbidrag (refereegranskat)abstract
    • ATI 718Plus® is a γ′-strengthened nickel-based superalloy developed to substitute the widely used Alloy 718 in aero-engine applications. This newer superalloy is a candidate material for aero-engine turbine structures, with the requirement to withstand impact loading occurring at high strain rates during turbine blade out events. Furthermore, the understanding of the high strain rate response of ATI 718Plus® is important in optimising its machinability during cutting operations. To predict and model the behaviour of ATI 718Plus® during these events and in other dynamic impact applications, proper understanding of the high strain rate behaviour of the alloy is important, but not presently available. Therefore, in this work, the influence of microstructural condition and strain rates on dynamic impact behaviour of ATI 718Plus®, using a modified version of direct impact Hopkinson bar, is investigated. It is observed that the age-hardened alloy exhibits a significantly reduced strain hardening and strain rate hardening capabilities compared to the solution heat treated microstructure. Furthermore, microstructural examination of the deformed samples shows that the formation of adiabatic shear bands, which usually serve as damage nucleation site, is substantially suppressed in the solution heat treated microstructure, while the aged microstructure exhibits high propensity to form localised shear bands.
  •  
3.
  • Goel, Sneha, 1993-, et al. (författare)
  • The Effect of Location and Post-treatment on the Microstructure of EBM-Built Alloy 718
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer. - 2367-1696 .- 2367-1181. - 9783319894799 - 9783319894805 ; , s. 115-129
  • Konferensbidrag (refereegranskat)abstract
    • Additive manufacturing (AM) of Ni-based superalloys such as Alloy 718 may obviate the need for difficult machining and welding operations associated with geometrically intricate parts, thus potentially expanding design possibilities and facilitating cost-effective manufacture of complex components. However, processing AM builds completely free from defects, which may impair mechanical properties such as fatigue and ductility, is challenging. Anisotropic properties, microstructural heterogeneities and local formation of undesired phases are additional concerns that have motivated post-treatment of AM builds. This work investigates the microstructural changes associated with post-treatment of Alloy 718 specimens produced by Electron Beam Melting (EBM) for as-built microstructures at 3 build heights: near base plate, in the middle of build and near the top of the build. Two different post-treatment conditions, hot isostatic pressing (HIP) alone and a combined HIP with solutionising and two-step aging were examined and compared to the results for the as-built condition. The influence of various post-treatments on minor phase distributions (δ, γ″, carbides), overall porosity, longitudinal grain widths and Vickers microhardness was considered. The HIP treatment led to significant reduction in overall porosity and dissolution of δ phase, which led to appreciable grain growth for both post-treatment conditions. The variation in hardness noted as a function of build height for the as-built specimens was eliminated after post-treatment. Overall, the hardness was found to decrease after HIP and increase after the full HIP, solutionising and aging treatment, which was attributed to dissolution of γ″ during HIP and its re-precipitation in subsequent heat treatment steps.
  •  
4.
  • Hanning, Fabian, 1988, et al. (författare)
  • The Influence of Base Metal Microstructure on Weld Cracking in Manually GTA Repair Welded Cast ATI 718Plus®
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer International Publishing. - 2367-1696 .- 2367-1181. - 9783319894799 - 9783319894805 ; , s. 917-928
  • Konferensbidrag (refereegranskat)abstract
    • The effect of base metal conditions on the weld cracking response of cast ATI 718Plus® was investigated in this study, comparing as cast microstructure with pseudo hot isostatic pressing (HIP) heat treatments at 1120, 1160 and 1190 °C for dwell times of 4 and 24 h. Linear grooves have been filled using multipass manual gas tungsten arc welding (GTAW) to simulate repair welding conditions. Metallographic investigation revealed cracks in both base metal heat affected zone and fusion zone layers. The heat treatment temperatures chosen below, at and above incipient laves melting temperature of ATI 718Plus® were found to have an effect on weld cracking behaviour, with an increased average total crack length in the base metal heat affected zone for both 1160 and 1190 °C as compared to the as cast condition and the 1120 °C homogenization treatment. The increase in cracking susceptibility shows a correlation with the amount of Nb-rich secondary phases, with lower amounts leading to crack concentration to solidification grain boundaries present from the casting process, increasing the average crack length.
  •  
5.
  • Karimi Neghlani, Paria, 1986-, et al. (författare)
  • Microstructure Development in Track-by-Track Melting of EBM-Manufactured Alloy 718
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer. - 9783319894799 - 9783319894805 ; , s. 643-654
  • Konferensbidrag (refereegranskat)abstract
    • Electron beam melting (EBM) is a powder-bed fusion process within the group of additive manufacturing (AM) technology that is used to fabricate high performance metallic parts. Nickel-Iron base superalloys, such as Alloy 718, are subjected to successive heating and cooling at temperatures in excess of 800 °C during the EBM process. Characterization of the dendritic structure, carbides, Laves and δ-phase were of particular interest in this study. These successive thermal cycles influence the microstructure of the material resulting in a heterogeneous structure, especially in the building direction. Hence, the aim of this study was to gain increased fundamental understanding of the relationship between the processing history and the microstructure formed within a single layer. Different numbers of tracks with equal heights were for this purpose produced, varying from one to ten tracks. All tracks used the same process parameters regardless of number and/or position. Microstructure characteristics (sub-grain structure, grain structure and phases) were analyzed by optical microscopy, scanning electron microscopy equipped with energy disperse spectroscopy and electron backscatter diffraction. The direction of dendrites changed in the overlap zones within the tracks due to re-melting of material in the overlap zone. The primary dendrite arm spacings slightly increased along multi-tracks owing to a slight decrease in cooling rate by addition of the next tracks. Epitaxial growth of grains were observed in all samples due to partial re-melting of grains in previous layers and surface nucleation was also found to occur in all tracks.
  •  
6.
  • Sadeghimeresht, Esmaeil, 1985-, et al. (författare)
  • Isothermal Oxidation Behavior of EBM-Additive Manufactured Alloy 718
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer. - 9783319894799 - 9783319894805 ; , s. 219-240
  • Konferensbidrag (refereegranskat)abstract
    • Oxidation of Alloy 718 manufactured by electron beam melting (EBM) process has been undertaken in ambient air at 650, 700, and 800 °C for up to 168 h. At 800 °C, a continuous external chromia oxide enriched in (Cr, Ti, Mn, Ni) and an internal oxide that was branched structure of alumina formed, whereas at 650 and 700 °C, a continuous, thin and protective chromia layer was detected. The oxidation kinetics of the exposed EBM Alloy 718 followed the parabolic rate law with an effective activation energy of ~248 ± 22 kJ/mol in good agreement with values in the literature for conventionally processed chromia-forming Ni-based superalloys. The oxide scale formed on the surface perpendicular to the build direction was slightly thicker, and more adherent compared to the scale formed on the surface along the build direction, attributed to the varied grain texture in the two directions of the EBM-manufactured specimens. The increased oxygen diffusion and high Cr depletion found on the surface along the build direction were attributed to the fine grains and formation of vacancies/voids along this grain orientation.
  •  
7.
  • Singh, Sukhdeep, 1988, et al. (författare)
  • Varestraint Weldability Testing of ATI 718Plus® : Influence of Eta Phase
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives. - Cham : Springer. - 9783319894799 - 9783319894805 ; , s. 929-937, s. 929-937
  • Konferensbidrag (refereegranskat)abstract
    • This study investigates the effect of eta phase on hot cracking susceptibility of ATI 718Plus®. Two heat treatment conditions of 950 °C/1 h and 950 °C/15 h having different amounts of eta phase were tested by longitudinal Varestraint testing method. The heat treatment at 950 °C/15 h exhibited the highest amount of cracking. This was related to the higher amount of eta phase precipitation during the long dwell heat treatment which aided to extensive liquation during welding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy