SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:9783959771443 "

Sökning: L773:9783959771443

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karagiannis, V., et al. (författare)
  • Addressing the node discovery problem in fog computing
  • 2020
  • Ingår i: OpenAccess Series in Informatics. - : Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. - 9783959771443
  • Konferensbidrag (refereegranskat)abstract
    • In recent years, the Internet of Things (IoT) has gained a lot of attention due to connecting various sensor devices with the cloud, in order to enable smart applications such as: smart traffic management, smart houses, and smart grids, among others. Due to the growing popularity of the IoT, the number of Internet-connected devices has increased significantly. As a result, these devices generate a huge amount of network traffic which may lead to bottlenecks, and eventually increase the communication latency with the cloud. To cope with such issues, a new computing paradigm has emerged, namely: fog computing. Fog computing enables computing that spans from the cloud to the edge of the network in order to distribute the computations of the IoT data, and to reduce the communication latency. However, fog computing is still in its infancy, and there are still related open problems. In this paper, we focus on the node discovery problem, i.e., how to add new compute nodes to a fog computing system. Moreover, we discuss how addressing this problem can have a positive impact on various aspects of fog computing, such as fault tolerance, resource heterogeneity, proximity awareness, and scalability. Finally, based on the experimental results that we produce by simulating various distributed compute nodes, we show how addressing the node discovery problem can improve the fault tolerance of a fog computing system. © Vasileios Karagiannis, Nitin Desai, Stefan Schulte, and Sasikumar Punnekkat; licensed under Creative Commons License CC-BY 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
  •  
2.
  • Nayak Seetanadi, Gautham, et al. (författare)
  • Routing using Safe Reinforcement Learning
  • 2020
  • Ingår i: 2nd Workshop on Fog Computing and the Internet of Things. - 9783959771443
  • Konferensbidrag (refereegranskat)abstract
    • The ever increasing number of connected devices has lead to a metoric rise in the amount data to be processed. This has caused computation to be moved to the edge of the cloud increasing the importance of efficiency in the whole of cloud. The use of this fog computing for time-critical control applications is on the rise and requires robust guarantees on transmission times of the packets in the network while reducing total transmission times of the various packets.We consider networks in which the transmission times that may vary due to mobility of devices, congestion and similar artifacts. We assume knowledge of the worst case tranmssion times over each link and evaluate the typical tranmssion times through exploration. We present the use of reinforcement learning to find optimal paths through the network while never violating preset deadlines. We show that with appropriate domain knowledge, using popular reinforcement learning techniques is a promising prospect even in time-critical applications.
  •  
3.
  • Struhar, Vaclav, et al. (författare)
  • Real-time containers : A survey
  • 2020
  • Ingår i: OpenAccess Series in Informatics. - : Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. - 9783959771443
  • Konferensbidrag (refereegranskat)abstract
    • Container-based virtualization has gained a significant importance in a deployment of software applications in cloud-based environments. The technology fully relies on operating system features and does not require a virtualization layer (hypervisor) that introduces a performance degradation. Container-based virtualization allows to co-locate multiple isolated containers on a single computation node as well as to decompose an application into multiple containers distributed among several hosts (e.g., in fog computing layer). Such a technology seems very promising in other domains as well, e.g., in industrial automation, automotive, and aviation industry where mixed criticality containerized applications from various vendors can be co-located on shared resources. However, such industrial domains often require real-time behavior (i.e, a capability to meet predefined deadlines). These capabilities are not fully supported by the container-based virtualization yet. In this work, we provide a systematic literature survey study that summarizes the effort of the research community on bringing real-time properties in container-based virtualization. We categorize existing work into main research areas and identify possible immature points of the technology. © Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V. Papadopoulos; licensed under Creative Commons License CC-BY 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
  •  
4.
  • Vreman, Nils, et al. (författare)
  • Evaluation of burst failure robustness of control systems in the fog
  • 2020
  • Ingår i: 2nd Workshop on Fog Computing and the IoT, Fog-IoT 2020. - 2190-6807. - 9783959771443 ; 80
  • Konferensbidrag (refereegranskat)abstract
    • This paper investigates the robustness of control systems when a controller is run in a Fog environment. Control systems in the Fog are introduced and a discussion regarding relevant faults is presented. A preliminary investigation of the robustness properties of a MinSeg case study is presented and commented. The discussion is then used to outline future lines of research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy