SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ågren Jon Professor) "

Sökning: WFRF:(Ågren Jon Professor)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson Čabrajić, Anna V, 1978- (författare)
  • Modeling lichen performance in relation to climate : scaling from thalli to landscapes
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lichens can colonize nearly all terrestrial habitats on earth and are functionally important in many ecosystems. Being poikilohydric, their active growth periods are restricted to periods when the thallus is hydrated from atmospheric water sources, such as rain, fog and high relative humidity. Since lichen hydration varies greatly over time lichen growth is therefore more difficult to model compared with, for example vascular plants with more even water supply. I developed two models to predict lichen hydration under field conditions that incorporates the atmospheric water potential (Ψair), derived from air temperature and humidity, only or in combination with species-specific rehydration and desiccation rates. Using Ψair allows the prediction of hydration induced by several water sources. These models were very accurate for epiphytic lichens with a close coupling to atmospheric conditions, but they were less accurate for mat-forming lichens with substantial aerodynamic boundary layers. The hydration model was further developed to include photosynthetic activation for different species, in order to compare their performance under different micro-climatic scenarios. Water balance and activation rate had large effects on lichen activity and were positively related to habitats providing long hydration periods, for example close to streams. To study effects of climate change, a complete model for net carbon gain (photosynthesis minus respiratory losses) was developed for an epiphytic lichen with intricate responses to light, hydration and temperature. Simulation responses in different climate scenarios revealed that projected climate change on a regional scale resulted in varied local scale responses. At the lighter, exposed sites of a forest, the growth responses were positive, but were potentially negative at darker sites with closed canopy. At the local scale, fluctuating hydration, summed irradiance when wet and Chlorophyll a are variables that predict lichen growth. However, at a landscape scale, these variables may be too detailed. We tested this for two terrestrial, mat-forming lichens and developed statistical models for lichen growth in the widest possible climatic gradient in northern Scandinavia, varying in light, temperature and precipitation. Light was the most important factor for high growth at the landscape scale, reaching saturation at a site openness of 40 %, equivalent to a basal tree area of 15 m2 ha -1 in this study. Thereafter, hydration was the next limiting factor, which could be well described by precipitation for one of the species. The simplest predictor was the normal temperature in July, which was negatively correlated with growth. It was apparent that the predictive variables and their power varied at different scales. However, light and hydration are limiting at all scales, particularly by light conditions when lichens are wet. This implies that ensuring that there is sufficient light below the forest canopy is crucial for lichen growth, especially for mat-forming lichens. Hydrophilic lichens may be better preserved in open habitats with long hydration periods. It was shown that models can be powerful and “easy to use” tools to predict lichen responses in various habitats and under different climate scenarios. Models can therefore help to identify suitable habitats with optimal growth conditions, which is very important for the conservation and management of lichens and their habitats.
  •  
2.
  • Postma, Froukje M., 1988- (författare)
  • Selection during Early Life Stages and Local Adaptation in Arabidopsis thaliana
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organisms are often adapted to their local environment, but the role of early life stages in adaptive differentiation among populations remains poorly known. The aim of my thesis was to investigate the contribution of early life stages to the magnitude and genetic basis of local adaptation, and to identify the underlying adaptive traits. For this, I used two natural populations of the annual plant Arabidopsis thaliana from Italy and Sweden, and a Recombinant Inbred Line (RIL) population derived from a cross between these populations. By combining greenhouse and field experiments, Quantitative Trait Loci (QTL) mapping, and path analysis, I examined (1) the genetic basis of seed dormancy, (2) the contribution of differential seedling establishment to local adaptation, (3) among-year variation in selection during seedling establishment, (4) direct and indirect effects of seed dormancy and timing of germination on fitness, and (5) the adaptive value of the seed bank.I found that both the level and the genetic basis of seed dormancy were affected by the maternal environment. One major-effect QTL was identified in all maternal environments, which overlaps with the dormancy gene DELAY OF GERMINATION 1 (DOG1).Selection through seedling establishment success contributed strongly to local adaptation and genetic tradeoffs, and varied among years. Variation in seedling establishment and overall fitness among RILs could be explained by genetically based differences in seed dormancy and timing of germination. Seed dormancy affected fitness throughout the life cycle, by affecting the proportion of germinated seeds, and indirectly via effects on timing of germination, plant size and flowering time.My results suggest that a considerable portion of A. thaliana seeds enter the seed bank. I found genetic differences in dormancy cycling behaviour between the two populations, which could contribute to local adaptation. The value of a seed bank should be higher at the Swedish study site than at the Italian study site due to lower rate of seed mortality in the soil.Overall, the results of this thesis demonstrate that early life stages contribute strongly to both the magnitude and the genetics of local adaptation.
  •  
3.
  • von Euler, Tove, 1976- (författare)
  • Environmental heterogeneity, population dynamics and life-history differentiation in Primula farinosa
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Allocation to reproduction is a key life-history trait. Optimal allocation to reproduction depends on environmental conditions because of their effects both on costs and benefits of reproduction and on patterns of growth, fecundity, and mortality. In this thesis, I studied 24 populations of the perennial herb Primula farinosa in the northern part of the Great Alvar on Öland, SE Sweden, and in an experimental garden at Stockholm University to investigate how plant allocation patterns and population dynamics vary along environmental gradients. In the first study, I performed experimental manipulations of reproduction to study costs of reproduction in relation to water availability. In the second study, I performed a demographic survey to investigate the effects of pre-dispersal seed predation on host-plant population dynamics in relation to environmental context. In the third study, I used a common garden experiment to investigate whether environmental variation among natural populations was correlated with genetic differentiation in reproductive effort, and in the fourth study, I performed reciprocal transplantations among four populations to investigate whether genetically based adaptive differentiation among local populations could be detected. The results showed that under natural conditions, plant reproductive costs, intensity of pre-dispersal seed predation, population growth rate and reproductive effort varied with water availability and vegetation height. Costs of reproduction were detected at high and low water availability but not under intermediate soil moisture conditions (paper I). Population dynamics of P. farinosa were affected by environmental conditions both directly, through effects on potential population growth rate (in the absence of seed predation) and indirectly, through effects on seed predation intensity and sensitivity to seed predation (paper II). Among-population genetic differentiation in reproductive allocation was documented in the common-garden experiment (paper III). However, reciprocal transplantations among populations separated by up to 6.2 km provided no evidence of local adaptation to current environmental conditions. Moreover, large differences in the performance of individuals transplanted to different study sites suggest that the study populations display considerable phenotypic plasticity (paper IV). Taken together, the results of these studies suggest that environmental variation has important direct and indirect effects on population dynamics and life history trade-offs in P. farinosa, and that differences in reproductive effort partly reflect genetic differentiation, but that phenotypic variation observed among natural populations does not reflect adaptations to current environmental conditions.  
  •  
4.
  • Akiyama, Reiko, 1981- (författare)
  • Life History and Tolerance and Resistance against Herbivores in Natural Populations of Arabidopsis thaliana
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I combined observational studies with field and greenhouse experiments to examine selection on life history traits and variation in tolerance and resistance against herbivores in natural populations of the annual herb Arabidopsis thaliana in its native range. I investigated (1) phenotypic selection on flowering time and plant size, (2) the effects of timing of germination on plant fitness, (3) the effect of leaf damage on seed production, and (4) correlations between resistance against a specialist and a generalist insect herbivore. In all three study populations, flowering time was negatively related to plant fitness, but in only one of the populations, significant selection on flowering time was detected when controlling for size prior to the flowering season. The results show that correlations between flowering time and plant fecundity may be confounded by variation in plant size prior to the reproductive season. A field experiment detected conflicting selection on germination time: Early germination was associated with low seedling survival, but also with large leaf rosette before winter and high survival and fecundity among established plants. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination, and that the optimal timing of germination should vary in space and time as a function of the relative strength of selection acting during different life-history stages. Experimental leaf damage demonstrated that tolerance to damage was lowest among vegetative plants early in the season, and highest among flowering plants later in the season. Given similar damage levels, leaf herbivores feeding on plants before flowering should thus exert stronger selection on defence traits than those feeding on plants during flowering. Resistance against larval feeding by the specialist Plutella xylostella was negatively correlated with resistance against larval feeding by the generalist Mamestra brassicae and with resistance against oviposition by P. xylostella when variation in resistance was examined within and among two Swedish and two Italian A. thaliana populations. The results suggest that negative correlations between resistance against different herbivores and different life-history stages of herbivores may contribute to the maintenance of genetic variation in resistance.
  •  
5.
  • Nilsson, Emil, 1973- (författare)
  • Breeding System Evolution and Pollination Success in the Wind-Pollinated Herb Plantago maritima
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I examined variation in sex expression and mating patterns in the sexually polymorphic, wind-pollinated herb Plantago maritima. With a combination of field studies, greenhouse experiments, and genetic analyses, I (a) examined factors influencing sex ratio variation in gynodioecious plants (in which hermaphrodites and females coexist), (b) discovered variation in breeding system, (c) investigated density-dependence of seed production, and (d) documented genetic variation within and among populations close to the northern range margin in Europe. In a survey of 104 P. maritima populations, I documented considerable variation in sex ratio (range 0-70% females, median 6.3% females). As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. Among twelve populations sampled for seed production, the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites, and by stochastic processes in small populations.A comparative field study showed that plant fecundity decreased with increasing distance to nearest pollen donor both within and among populations in an archipelago in southern Sweden, where self-incompatibility was confirmed in controlled crosses. In contrast, plant fecundity was overall higher and was not density-dependent in the Skeppsvik archipelago in northern Sweden, where controlled crosses showed that plants are self-compatible. The results were consistent with the prediction that evolution of self-fertility should reduce density-dependence of pollination success.I quantified the genetic structure within and among populations from eastern Sweden and western Finland based on variation at four polymorphic microsatellite loci. The genetic diversity was low in northern Sweden, which may be the result of a history of small population sizes and periods of frequent self-fertilization.
  •  
6.
  • Puentes, Adriana, 1982- (författare)
  • Plant-Herbivore Interactions and Evolutionary Potential of Natural Arabidopsis lyrata Populations
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I combined field, greenhouse and common-garden experiments to examine the ecological and evolutionary consequences of plant-herbivore interactions and the genetic architecture of fitness-related traits in the insect-pollinated, self-incompatible, perennial herb Arabidopsis lyrata. More specifically, I examined (1) whether damage to leaves and inflorescences affects plant fitness non-additively, (2) whether trichome production is associated with a cost in terms of reduced tolerance to leaf and inflorescence damage, (3) whether young plant resistance to a specialist insect herbivore varies among populations, and (4) whether the evolution of flowering time, floral display and rosette size is constrained by lack of genetic variation or by genetic correlations among traits.A two-year field experiment in a Swedish population showed that damage to rosette leaves and to inflorescences can affect both current and future plant performance of A. lyrata, and that effects on some fitness components are non-additive. A two-year field experiment in another Swedish population indicated that trichome-producing plants are not less tolerant than glabrous plants to leaf and inflorescence damage. In a greenhouse experiment, acceptability of young plants (5-6 weeks old) to ovipositing females and damage received by Plutella xylostella larvae varied considerably among twelve A. lyrata populations. Both oviposition and leaf damage were positively correlated with rosette size, but trichome density in the trichome-producing morph was apparently too low at this developmental stage to influence resistance to P. xylostella. In a common-garden experiment, flowering time, floral display and rosette size varied among four Scandinavian A. lyrata populations, and displayed significant additive genetic variation in some populations. Yet, strong genetic correlations between flowering start and number of flowers, and between petal length and petal width suggest that these traits may not evolve independently.Taken together, the results indicate the need to consider possible long-term and non-additive effects of herbivore damage to different plant parts, that there is no trade-off between trichome production and tolerance to herbivory, that the importance of morphological defenses against herbivory may change through plant ontogeny, and that considerable genetic variation for traits such as flowering time and floral display can be maintained in natural plant populations.
  •  
7.
  • Sandring, Saskia, 1974- (författare)
  • Plant-Animal Interactions and Evolution of Floral Display and Flowering Phenology in Arabidopsis lyrata
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I combined comparative and experimental approaches to examine selection on reproductive traits, and population differentiation in the insect-pollinated, outcrossing, perennial herb Arabidopsis lyrata. More specifically, I (1) determined whether selection on flowering phenology and floral display can be attributed to interactions with pollinators and herbivores, (2) examined whether population differentiation in flowering phenology and floral display is correlated with current selection on these traits, and (3) tested for local adaptation from contrasting environments in Europe.A field experiment conducted in a Swedish population demonstrated, that interactions with pollinators may markedly affect selection on both floral display and phenology of flowering. In an alpine population in Norway, grazing damage to inflorescences strongly influenced selection on floral display. The results suggest that variation in the abundance of pollinators and herbivores should contribute to spatio-temporal variation in selection on flowering phenology and floral display in A. lyrata. A common-garden experiment showed that flowering phenology and floral display vary among Scandinavian populations of A. lyrata. For some traits patterns of population differentiation were consistent with differences in the direction and strength of phenotypic selection determined in comparisons (a) between an alpine population in Norway and a coastal population in Sweden, and (b) among coastal populations in Sweden. This suggests that current selection contributes to the maintenance of genetic differentiation in these traits.Adaptive differentiation among populations was examined in a reciprocal transplant experiment that included populations from three contrasting environments, alpine Norway, coastal Sweden and lowland, continental Germany. The experiment provided evidence for local adaptation, and indicated that populations have diverged in traits affecting plant establishment and early growth.
  •  
8.
  • Toräng, Per, 1978- (författare)
  • Pollinators, Enemies, Drought, and the Evolution of Reproductive Traits in Primula farinosa
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I combined comparative and experimental approaches to examine selection on reproductive traits and population differentiation in the insect-pollinated, self-incompatible, perennial herb Primula farinosa. More specifically, I (1) determined whether the effects of floral display and interactions with pollinators and seed predators, and plant reproductive success were frequency-dependent and affected by surrounding vegetation context, (2) examined the consequences of intermittent drought years on population dynamics using numerical simulations based on demographic data collected over seven years, (3) analyzed among-population differentiation in flowering phenology and reproductive allocation, and its relationship to soil-depth at the site of origin.A field experiment suggested that conspicuous plants facilitate inconspicuous plants in terms of pollinator attraction, and that the facilitation effect is contingent on the height of the surrounding vegetation. Further experiments revealed that both mutualistic and antagonistic interactions can result in frequency-dependent selection on floral display. Among inconspicuous plants, both fruit initiation, and damage from seed predators increased with the proportion of the conspicuous morph. The relative strength of these effects, and therefore their net outcome on the relationship between morph ratio and seed production varied among years.I combined information on vital rates and their relation to environmental conditions in simulations to predict future population viability in changing environments. Simulated stochastic population growth rate decreased with increasing frequency of drought years.Reproductive allocation varied significantly among populations both in the field and in a common-garden experiment, but was correlated with soil depth at the site of origin only in the field. The results suggest that among-population variation in reproductive effort in the field mainly reflects plastic responses to environmental conditions, and that this plasticity may be adaptive. The common-garden experiment suggested that the study populations have diverged genetically in flowering time.
  •  
9.
  • Trunschke, Judith (författare)
  • Pollinator-mediated selection and the evolution of floral traits in orchids
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I combined manipulations of traits and pollination environment with analysis of phenotypic selection to examine causes of variation in strength and mode of selection on floral traits, and I conducted a reciprocal sowing experiment to test for local adaptation in germination success. I tested the following predictions (1) the opportunity for selection, and the strength of pollinator-mediated and net selection increase with increasing pollen limitation, (2) the effects of traits affecting pollinator attraction and traits affecting pollination efficiency are non-additive and this leads to pollinator-mediated correlational selection, (3) the effects of spur length on pollen removal, pollen receipt, and female fitness differ between populations with short-tongued and populations with long-tongued pollinators, and (4) local adaptation at the stage of germination contributes to the maintenance of ecotypes growing in grasslands and woodlands, respectively.A study including natural populations of 12 orchid species that varied widely in pollen limitation showed that opportunity for selection, pollinator-mediated selection and net selection were all positively related to pollen limitation, whereas non-pollinator-mediated selection was not. In the moth-pollinated orchid Platanthera bifolia, experimental reductions of plant height and spur length decreased pollen removal, pollen receipt and fruit production, but non-additive effects were not detected. Effects of plant height translated into pollinator-mediated selection for taller plants via female fitness, but there was no current pollinator-mediated selection on spur length. An experiment using artificial nectar spurs demonstrated that in P. bifolia pollen receipt saturated at shorter spur length in a population with short-tongued pollinators than in a population with a long-tongued pollinator. Effects of spur length on pollen receipt did not translate into current pollinator-mediated selection indicating that also plants with the shortest spurs for the most part received sufficient pollen for full seed set. Reciprocal sowing of seeds from grassland and woodland populations detected no evidence of local adaptation at the germination stage between ecotypes of P. bifolia.Taken together, the results illustrate how a combination of trait manipulation and analysis of strength and causes of selection can throw light on both the functional and adaptive significance of trait variation within and among natural populations.
  •  
10.
  • Zacchello, Giulia (författare)
  • Ecology and evolution of local adaptation in Arabidopsis thaliana
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, I investigate the ecological genetics of local adaptation in the annual herb Arabidopsis thaliana with the aim to identify key traits, agents of selection, and genomic regions contributing to adaptive differentiation. The thesis focuses on adaptive differentiation in timing of germination and seed dormancy between populations located close to the southern and northern range margins in Europe. I aimed to: (1) determine how much a particular genomic region contributes to local adaptation between an Italian and a Swedish population, (2) characterize selection on timing of germination in a Mediterranean climate, (3) quantify variation in seed dormancy and identify potential agents of selection on seed dormancy within Italy and Fennoscandia, and (4) examine the genetic basis of the seed dormancy cycle and the adaptive value of seed banks.Differences in a genomic region at the end of chromosome 5 explained a large proportion of differences in fitness, and in germination and flowering time between the Italian and Swedish population.A field experiment at the site of the Italian population, indicated strong stabilizing selection on timing of germination with an optimum coinciding with the time of germination in the local population.Seed dormancy of Italian populations was stronger than that of Fennoscandian populations, but also varied considerably within regions, indicating that this trait has considerable evolutionary flexibility. In Fennoscandia, variation in seed dormancy was related to climatic conditions in summer, suggesting that differences are at least partly adaptive.The seed dormancy cycle in the soil differed between the focal Italian and Swedish population, and matched seasonal changes in conditions for seedling establishment at their sites of origin. Differences in the genomic region at the end of chromosome 5 could explain a large proportion of the difference in the seed dormancy cycle. Mortality of seeds was much higher in Italy than in Sweden, indicating that the importance of the seed bank for population dynamics differs between the two sites.Overall, the results suggest that differences in a genomic region on chromosome 5 and in early life stages can play a key role in local adaptation in A. thaliana.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy