SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åkerfeldt Karin S.) "

Sökning: WFRF:(Åkerfeldt Karin S.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braun, Gabriel A., et al. (författare)
  • On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:12, s. 4781-4794
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembling peptide-based hydrogels are a class of tunable soft materials that have been shown to be highly useful for a number of biomedical applications. The dynamic formation of the supramolecular fibrils that compose these materials has heretofore remained poorly characterized. A better understanding of this process would provide important insights into the behavior of these systems and could aid in the rational design of new peptide hydrogels. Here, we report the determination of the microscopic steps that underpin the self-assembly of a hydrogel-forming peptide, SgI37-49. Using theoretical models of linear polymerization to analyze the kinetic self-assembly data, we show that SgI37-49 fibril formation is driven by fibril-catalyzed secondary nucleation and that all the microscopic processes involved in SgI37-49 self-assembly display an enzyme-like saturation behavior. Moreover, this analysis allows us to quantify the rates of the underlying processes at different peptide concentrations and to calculate the time evolution of these reaction rates over the time course of self-assembly. We demonstrate here a new mechanistic approach for the study of self-assembling hydrogel-forming peptides, which is complementary to commonly used materials science characterization techniques.
  •  
2.
  • Mattsson, Karin, et al. (författare)
  • Disaggregation of gold nanoparticles by Daphnia magna
  • 2018
  • Ingår i: Nanotoxicology. - : Informa UK Limited. - 1743-5390 .- 1743-5404. ; 12:8, s. 885-900
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of manufactured nanomaterials is rapidly increasing, while our understanding of the consequences of releasing these materials into the environment is still limited and many questions remain, for example, how do nanoparticles affect living organisms in the wild? How do organisms adapt and protect themselves from exposure to foreign materials? How does the environment affect the performance of nanoparticles, including their surface properties? In an effort to address these crucial questions, our main aim has been to probe the effects of aquatic organisms on nanoparticle aggregation. We have, therefore, carried out a systematic study with the purpose to disentangle the effects of the freshwater zooplankter, Daphnia magna, on the surface properties, stability, and aggregation properties of gold (Au) nanoparticles under different aqueous conditions as well as identified the proteins bound to the nanoparticle surface. We show that Au nanoparticles aggregate in pure tap water, but to a lesser extent in water that either contains Daphnia or has been pre-conditioned with Daphnia. Moreover, we show that proteins generated by Daphnia bind to the Au nanoparticles and create a modified surface that renders them less prone to aggregation. We conclude that the surrounding milieu, as well as the surface properties of the original Au particles, are important factors in determining how the nanoparticles are affected by biological metabolism. In a broader context, our results show how nanoparticles released into a natural ecosystem become chemically and physically altered through the dynamic interactions between particles and organisms, either through biological metabolism or through the interactions with biomolecules excreted by organisms into the environment.
  •  
3.
  • Braun, Gabriel A., et al. (författare)
  • Deuterium-Enhanced Raman Spectroscopy for Histidine pKa Determination in a pH-Responsive Hydrogel
  • 2020
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495. ; 119:9, s. 1701-1705
  • Tidskriftsartikel (refereegranskat)abstract
    • We report here a method for the determination of the pKa of histidine in complex or heterogeneous systems amenable to neither solid-state nor solution NMR spectroscopy. Careful synthesis of a fluorenylmethyloxycarbonyl- and trityl-protected, C2-deuterated histidine produces a vibrational-probe-equipped amino acid that can readily be incorporated into any peptide accessible by standard solid-phase methods. The frequency of the unique, Raman-active stretching vibration of this C2-D probe is a clear reporter of the protonation state of histidine. We investigate here a pH-sensitive peptide that self-assembles to form a hydrogel at neutral pH. The pKa of the lone histidine residue in the peptide, which is likely responsible for this pH-dependent behavior, cannot be investigated by NMR spectroscopy because of the supramolecular, soft nature of the gel. However, after synthesizing a C2-deuterated-histidine-containing peptide, we were able to follow the protonation state of histidine throughout a pH titration using Raman difference spectroscopy, thereby precisely determining the pKa of interest.
  •  
4.
  • Pogostin, Brett H., et al. (författare)
  • pKa Determination of a Histidine Residue in a Short Peptide Using Raman Spectroscopy
  • 2019
  • Ingår i: Molecules (Basel, Switzerland). - : MDPI AG. - 1420-3049. ; 24:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the pKa of key functional groups is critical to understanding the pH-dependent behavior of biological proteins and peptide-based biomaterials. Traditionally, ¹H NMR spectroscopy has been used to determine the pKa of amino acids; however, for larger molecules and aggregating systems, this method can be practically impossible. Previous studies concluded that the C-D stretches in Raman are a useful alternative for determining the pKa of histidine residues. In this study, we report on the Raman application of the C2-D probe on histidine's imidazole side chain to determining the pKa of histidine in a short peptide sequence. The pKa of the tripeptide was found via difference Raman spectroscopy to be 6.82, and this value was independently confirmed via ¹H NMR spectroscopy on the same peptide. The C2-D probe was also compared to other Raman reporters of the protonation state of histidine and was determined to be more sensitive and reliable than other protonation-dependent signals. The C2-D Raman probe expands the tool box available to chemists interested in directly interrogating the pKa's of histidine-containing peptide and protein systems.
  •  
5.
  • Shimanovich, Ulyana, et al. (författare)
  • pH-Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide
  • 2021
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptides and proteins have evolved to self-assemble into supramolecular entities through a set of non-covalent interactions. Such structures and materials provide the functional basis of life. Crucially, biomolecular assembly processes can be highly sensitive to and modulated by environmental conditions, including temperature, light, ionic strength and pH, providing the inspiration for the development of new classes of responsive functional materials based on peptide building blocks. Here, it is shown that the stimuli-responsive assembly of amyloidogenic peptide can be used as the basis of environmentally responsive microcapsules which exhibit release characteristics triggered by a change in pH. The microcapsules are biocompatible and biodegradable and may act as vehicles for controlled release of a wide range of biomolecules. Cryo-SEM images reveal the formation of a fibrillar network of the capsule interior with discrete compartments in which cargo molecules can be stored. In addition, the reversible formation of these microcapsules by modulating the solution pH is investigated and their potential application for the controlled release of encapsulated cargo molecules, including antibodies, is shown. These results suggest that the approach described here represents a promising venue for generating pH-responsive functional peptide-based materials for a wide range of potential applications for molecular encapsulation, storage, and release.
  •  
6.
  • Sprenger, Janina, et al. (författare)
  • Calmodulin complexes with brain and muscle creatine kinase peptides
  • 2021
  • Ingår i: Current Research in Structural Biology. - : Elsevier BV. - 2665-928X. ; 3, s. 121-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Calmodulin (CaM) is a ubiquitous Ca2+ sensing protein that binds to and modulates numerous target proteins and enzymes during cellular signaling processes. A large number of CaM-target complexes have been identified and structurally characterized, revealing a wide diversity of CaM-binding modes. A newly identified target is creatine kinase (CK), a central enzyme in cellular energy homeostasis. This study reports two high-resolution X-ray structures, determined to 1.24 ​Å and 1.43 ​Å resolution, of calmodulin in complex with peptides from human brain and muscle CK, respectively. Both complexes adopt a rare extended binding mode with an observed stoichiometry of 1:2 CaM:peptide, confirmed by isothermal titration calorimetry, suggesting that each CaM domain independently binds one CK peptide in a Ca2+-depended manner. While the overall binding mode is similar between the structures with muscle or brain-type CK peptides, the most significant difference is the opposite binding orientation of the peptides in the N-terminal domain. This may extrapolate into distinct binding modes and regulation of the full-length CK isoforms. The structural insights gained in this study strengthen the link between cellular energy homeostasis and Ca2+-mediated cell signaling and may shed light on ways by which cells can ‘fine tune’ their energy levels to match the spatial and temporal demands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy