SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åkerman Johan Professor) "

Sökning: WFRF:(Åkerman Johan Professor)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albertsson, Dagur Ingi (författare)
  • Spintronic and Electronic Oscillators for Magnetic Field Sensing and Ising Machines
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Oscillators can exhibit a range of complex dynamics which are often encountered in nature. These characteristics include synchronization, injection locking, chaos, bifurcations, etc. To date, the applications of electronic oscillators has mostly been limited to communication systems. However, in recent years, the possibility of using the rich dynamics of oscillators in unconventional applications, including time-based information processing and computational applications, has been also explored. In this thesis, this potential is investigated using emerging spintronic oscillators and established electronic oscillators. The first part of this thesis targets emerging spintronic oscillators, which exhibit a range of attractive features, including GHz operating frequency, wide tunability and nanoscale size. To explore the potential of these devices, an electrical behavioural model was developed for the promising three-terminal spin-Hall nano-oscillator. The behavioural model is based on the macrospin approximation, which is commonly used to describe the operation principles of spintronic oscillators, and it was implemented in Verilog-A. Moreover, the behavioural model was verified against experimental measurements from literature, demonstrating that the most important characteristics of three-terminal spin-Hall nano-oscillators are accurately captured. Subsequently, two potential applications that could benefit from the unique characteristics of spintronic oscillators were identified and explored. First, a magnetic field sensing system, which takes advantage of the wide frequency tunability of spintronic oscillators as a function of externally applied magnetic field, was proposed and demonstrated. This sensing system, inspired by voltage-controlled oscillator analog-to-digital converters, shows performance similar to the state-of-the-art magnetic field sensors, making it a promising application for spintronic oscillators. Next, the possibility of utilizing spintronic oscillators to realize Ising machines (IMs) was explored and demonstrated with numerical simulations. This was the first-time demonstration of spintronic oscillator-based Ising machines. The numerical simulation results show that spintronic oscillators are a promising device to realize ultra-fast Ising Machines able to solve complex combinatorial optimization problems on nano-second time scale.The second part of the thesis extends on the idea of oscillator-based IMs, but using electronic oscillators. The potential of realizing highly reconfigurable oscillator-based IMs based on quasiperiodically modulated coupling was explored. The advantages and potential challenges associated with this approach were highlighted, and a proof-of-concept IM using CMOS ring oscillators was proposed and simulated. Finally, a completely new type of IMs based on bifurcations in a network of coupled Duffing oscillators was proposed and developed. This work highlights a new research direction based on using dynamical systems implemented with analog circuits to realize IMs.
  •  
2.
  • Eklund, Anders, 1986- (författare)
  • Microwave Frequency Stability and Spin Wave Mode Structure in Nano-Contact Spin Torque Oscillators
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The nano-contact spin torque oscillator (NC-STO) is an emerging device for highly tunable microwave frequency generation in the range from 0.1 GHz to above 65 GHz with an on-chip footprint on the scale of a few μm. The frequency is inherent to the magnetic material of the NC-STO and is excited by an electrical DC current by means of the spin torque transfer effect. Although the general operation is well understood, more detailed aspects such as a generally nonlinear frequency versus current relationship, mode-jumping and high device-to-device variability represent open questions. Further application-oriented questions are related to increasing the electrical output power through synchronization of multiple NC-STOs and integration with CMOS integrated circuits.This thesis consists of an experimental part and a simulation part. Experimentally, for the frequency stability it is found that the slow but strong 1/f-type frequency fluctuations are related to the degree of nonlinearity and the presence of perturbing, unexcited modes. It is also found that the NC-STO can exhibit up to three propagating spin wave oscillation modes with different frequencies and can randomly jump between them. These findings were made possible through the development of a specialized microwave time-domain measurement circuit. Another instrumental achievement was made with synchrotron X-rays, where we image dynamically the magnetic internals of an operating NC-STO device and reveal a spin wave mode structure with a complexity significantly higher than the one predicted by the present theory.In the simulations, we are able to reproduce the nonlinear current dependence by including spin wave-reflecting barriers in the nm-thick metallic, magnetic free layer. A physical model for the barriers is introduced in the form of metal grain boundaries with reduced magnetic exchange coupling. Using the experimentally measured average grain size of 30 nm, the spin wave mode structure resulting from the grain model is able to reproduce the experimentally found device nonlinearity and high device-to-device variability.In conclusion, the results point out microscopic material grains in the metallic free layer as the reason behind the nonlinear frequency versus current behavior and multiple propagating spin wave modes and thereby as a source of device-to-device variability and frequency instability.
  •  
3.
  • Le, Quang Tuan, 1976- (författare)
  • Magnetodynamics in Spin Valves and Magnetic Tunnel Junctions with Perpendicular and Tilted Anisotropies
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Spin-torque transfer (STT) effects have brought spintronics ever closer to practical electronic applications, such as MRAM and active broadband microwave spin-torque oscillator (STO), and have emerged as an increasingly attractive field of research in spin dynamics. Utilizing materials with perpendicular magnetic anisotropy (PMA) in such applications offers several great advantages such as low-current, low-field operation combined with high thermal stability. The exchange coupling that a PMA thin film exerts on an adjacent in-plane magnetic anisotropy (IMA) layer can tilt the IMA magnetization direction out of plane, thus creating a stack with an effective tilted magnetic anisotropy. The tilt angle can be engineered via both intrinsic material parameters, such as the PMA and the saturation magnetization, and extrinsic parameters, such as the layer thicknesses.      STOs can be fabricated in one of a number of forms—as a nanocontact opening on a mesa from a deposited pseudospin-valve (PSV) structure, or as a nanopillar etching from magnetic tunneling junction (MTJ)—composed of highly reproducible PMA or predetermined tilted magnetic anisotropy layers.      All-perpendicular CoFeB MTJ STOs showed high-frequency microwave generation with extremely high current tunability, all achieved at low applied biases. Spin-torque ferromagnetic resonance (ST-FMR) measurements and analysis revealed the bias dependence of spin-torque components, thus promise great potential for direct gate-voltage controlled STOs.      In all-perpendicular PSV STOs, magnetic droplets were observed underneath the nanocontact area at a low drive current and low applied field. Furthermore, preliminary results for microwave auto-oscillation and droplet solitons were obtained from tilted-polarizer PSV STOs. These are promising and would be worth investigating in further studies of STT driven spin dynamics.
  •  
4.
  • Bonetti, Stefano, 1982- (författare)
  • Magnetization Dynamics in Nano-Contact Spin Torque Oscillators : Solitonic bullets and propagating spin waves
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetization dynamics in nano-contact spin torque oscillators (STOs) is investigated from an experimental and theoretical point of view. The fundamentals of magnetization dynamics due to spin transfer torque are given. A custom-made high frequency (up to 46 GHz) in large magnetic fields (up to 2.2 T) microwave characterization setup has been built for the purpose and described in this thesis. A unique feature of this setup is the capability of applying magnetic fields at any direction θe out of the sample plane, and with high precision. This is particularly important, because the (average) out-of-plane angle of the STO free magnetic layer has fundamental impact on spin wave generation and STO operation. By observing the spin wave spectral emission as a function of θe, we find that at angles θe below a certain critical angle θcr, two distinct spin wave modes can be excited: a propagating mode, and a localized mode of solitonic character (so called spin wave bullet). The experimental frequency, current threshold and frequency tuneability with current of the two modes can be described qualitatively by analytical models and quantitatively by numerical simulations. We are also able to understand the importance, so far underestimated, of the Oersted field in the dynamics of nano-contact STOs. In particular, we show that the Oersted field strongly affects the current tuneability of the propagating mode at subcritical angles, and it is also the fundamental cause of the mode hopping observed in the time-domain. This mode hopping has been observed both experimentally using a state-of-the-art real-time oscilloscope and corroborated by micromagnetic simulations. Micromagnetic simulations also reveal details of the spatial distribution of the spin wave excitations. By investigating the emitted power as a function of θe, we observed two characteristic behaviors for the two spin wave modes: a monotonic increase of the power for increasing out-of-plane angles in the case of the propagating mode; an increase towards a maximum power followed by a drop of it at the critical angle for the localized mode. Both behaviors are reproduced by micromagnetic simulations. The agreement with the simulations offers also a way to better understand the precession dynamics, since the emitted power is strongly connected to the angular variation of the giant magnetoresistance signal. We also find that the injection locking of spin wave modes with a microwave source has a strong dependence on θe, and reaches a maximum locking strength at perpendicular angles. We are able to describe these results in the theoretical framework of non-linear spin wave dynamics.
  •  
5.
  • Jiang, Sheng (författare)
  • Engineering Magnetic Droplets in Nanocontact Spin-Torque Nano-Oscillators
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Spin-torque nano-oscillators (STNOs) are nanoscale spintronic devices capable of generating highly tunable broadband microwave signals. In this thesis, I study nanocontact (NC)-based STNOs using strong perpendicular magnetic anisotropy(PMA) free layers, where a novel magnetic soliton—a magnetic droplet—exists. This work is devoted to further understanding the characteristics of the magnetic droplet in diverse magnetic structures, including orthogonal and all-perpendicular(all-PMA) spin valves (SVs) and orthogonal magnetic tunnel junctions (MTJs). The nucleation, transition, and collapse of magnetic droplets are observed, tailored, and analyzed by engineering the magnetic properties of the thin films’ stacks. This thesis consists of three main parts: Orthogonal SVs with [Co/Ni]/Cu/CoxNiFe1−x: Magnetic droplets were first observed in orthogonal SV STNOs. We engineered the fixed layer magnetization Ms,p by cosputtering different compositions of CoxNiFe1−x (x = 0−1). The nucleation boundaries of a magnetic droplet in a current-field phase shift to a lower region as Ms,p decreases. The nucleation boundary is also examined under canted fields in order to better understand the drift instability of the droplets. The observations not only confirm the theoretical predictions of nucleation boundary, but suggest a method for controlling the nucleation boundary. All-PMA SVs with [Co/Ni]/Cu/[Co/Pd]: In contrast to orthogonal SVs,all-PMA NC-STNOs show many novel features. First, thanks to the dramatic improvement in droplet stability that results from using a [Co/Pd] PMA fixed layer, the droplets are directly imaged by a scanning transmission x-ray microscopy(STXM). The transition between the static bubble and magnetic droplet is also observed and imaged. Moreover, to investigate the effect of PMA, He+ irradiation is conducted on the all-PMA NC-STNOs, progressively tuning the PMA. The transitions of the normal FMR-like mode and droplet mode are demonstrated. The behavior of frequency tunability versus PMA is systematically studied. These investigations of all-PMA and irradiated NC-STNOs show that it is feasible to engineer the magnetic properties of STNOs through He+ irradiation. Besides, the dynamic droplets and static bubbles have great potential applications in next-generation information carriers. Orthogonal MTJs with CoFeB/MgO/CoFe: The existence of droplets in orthogonal MTJs is still debated. Instead, the magnetodynamics are investigated here. Very importantly, we find that the frequency tunability is determined by the spin-transfer torque (STT), the voltage-controlled magnetic anisotropy (VCMA), and thermal heating. This paves the way to improving tunability by combining these contributions. This study will contribute greatly to real applications, such as microwave generators and detectors.
  •  
6.
  • Mazraati, Hamid, Industrial PhD Student, 1989- (författare)
  • Linear, Non-Linear, and Synchronizing Spin Wave Modes in Spin Hall Nano-Oscillators
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Spin Hall nano-oscillators (SHNOs) are nanoscale spintronic devices that generate microwave signals with highly tunable frequency. This thesis focuses on improving the signal quality of nanoconstriction-based SHNOs and also on developing a better understanding of their magnetization dynamics.In the first part of the thesis, we fabricate and characterize low-threshold current SHNOs using NiFe/β-W bilayers. Due to the high spin Hall angle of the β-phase W, the auto-oscillation threshold current is improved by 60% over SHNOs based on NiFe/Pt. We also demonstrate low operational current by utilizing W/Co20Fe60B20/MgO stacks on highly resistive silicon substrates. Thanks to the moderate perpendicular magnetic anisotropy (PMA) of Co20Fe60B20, these SHNOs show much wider frequency tunability than SHNOs based on NiFe with no PMA. Performance is further improved by using highly resistive silicon substrates with a high heat conductance, dissipating the generated excess heat much better than sapphire substrates. Moreover, it also means that the fabrication of SHNOs is now compatible with conventional CMOS fabrication, which is necessary if SHNOs are to be used in integrated circuits. In another approach, we attempt to decrease the threshold current of SHNOs based on an NiFe/Pt stack by inserting an ultra-thin Hf layer in the middle of the stack. This Hf dusting decreases the damping of the bilayer linearly but also degrades its spin Hall efficiency. These opposing trends determine the optimum Hf thickness to ≈0.4 nm, at which the auto-oscillation threshold current is minimum. Our achievements arising from these three approaches show a promising path towards the realization of low-current SHNO microwave devices with highly efficient spin-orbit torque.In the next chapter, we use both electrical experimentation and micromagnetic simulation to study the auto-oscillating spin wave modes in nanoconstriction-based SHNOs as a function of the drive current and the applied field. First, we investigate the modes under an in-plane low-range field of 40-80 mT, which is useful for developing low-field spintronic devices with applications in microwave signal generation. It is also essential for future studies on the synchronization of multiple SHNOs. Next, using an out-of-plane applied magnetic field, we observe three different modes and demonstrate switching between them under a fixed external field by tuning only the drive current. The flexibility of these nanopatterned spin Hall nano-oscillators is desirable for implementing oscillator-based neuromorphic computing devices.In the final part, we study the synchronization of multiple nanoconstriction-based SHNOs in weak in-plane fields. We electrically investigate the synchronization versus the angle of the field, observing synchronization for angles below a threshold angle. In agreement with the experimental results, the spatial profile of the spin waves from the simulations shows that the relative angle between the modes from the nanoconstrictions decreases with decreasing the field angle, thus facilitating synchronization. The synchronization observed at low in-plane fields improves the microwave signal quality and could also be useful for applications such as neuromorphic computing.
  •  
7.
  • Mohseni Armaki, Seyed Majid, 1978- (författare)
  • Spin valves and spin-torque oscillators with perpendicualr magnetic anisotropy
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Researches in spintronics, especially those remarkably classified in the current induced spin-transfer torque (STT) framework, circumvent challenges with different materials and geometries. Perpendicular magnetic anisotropy (PMA) materials are showing capability of holding promise to be employed in STT based spintronics elements, e.g. spin-torque oscillators (STOs), STT-magnetoresistive random access memories (STT-MRAMs) and current induced domain wall motion elements.This dissertation presents experimental investigations into developing sputter deposited Co/Ni multilayers (MLs) with PMA and employs these materials in nano-contact STOs (NC-STOs) based on giant magnetoresistance (GMR) effect and in pseudo-spin-valve (PSV) structures. The magnetostatic stray field coupling plays an important role in perpendicular PSVs. The temperature dependent coupling mechanism recommends that this coupling can be tailored, by i) the saturation magnetization and coercivity of the individual layers, ii) the coercivity difference in layers, and iii) the GMR spacer thickness, to get a well decoupled and distinguishable switching response. Moreover, this thesis focused on the implementation and detailed characterization of NC-STOs with strong PMA Co/Ni ML free layers and in-plane Co reference layers as orthogonal (Ortho) magnetic geometry in so-called Ortho-NC-STOs. The primary target of reaching record high STO frequencies, 12 GHz, at close to zero field, 0.02 Tesla, was achieved. However, in large external fields, >0.4 Tesla, an entirely new magnetodynamic object, a “magnetic droplet”, theoretically predicted in 1977, was discovered experimentally. Detailed experiments, combined with micromagnetic simulations, demonstrate the formation of a magnetic droplet with a partially reversed magnetization direction underneath the NC, and a zone of large amplitude precession in a region bounding the reversed magnetization. The magnetic droplet exhibits a very rich dynamics, including i) auto-modulation as a combine of droplet frequency with a slow time evolution (few GHz) of un-centering the droplet mode under the NC, ii) droplet breathing as reversible deformation of droplet mode with ½ droplet frequency. All observation of droplet opens a new mechanism of excitation for future fundamental studies as well as experiments especially for domain wall electronics and nano-scopic magnetism.
  •  
8.
  • Qejvanaj, Fatjon, 1985- (författare)
  • Fabrication and Characterization of magnetometer for space applications
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The present rapid increase in the number of space missions demands a decrease in the cost of satellite equipment, but also requires the development of instruments that have low power consumption, low weight, and small size.Anisotropic magnetoresistance (AMR) sensors can answer these needs on account of their small size, weight, and power consumption. AMR sensors also produce lower noise than either giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) devices and are thus more suitable for space applications.The type of AMR sensor developed in this study was a Planar Hall EffectBridge (PHEB) sensor. The FM layer was also coupled with an AFM layer in order to fix the internal magnetization of the FM layer.One technique that was employed in order to meet the low-noise requirement was to make the FM layer thicker than has previously been attempted.In doing so, the exchange bias field between the AFM layer and the FMlayer is no longer high enough to bias the thicker FM layer, so in order to correct this unwanted effect, the material stack was upgraded to two AFM–FM interfaces. With this configuration, it became possible to increase the exchange field by up to 60%. Stronger exchange bias leads to a thicker FMlayer and so to lower noise in the device performance. Another strategy that was used to lower the resistance of the device was to implement an NiFeX alloy instead of the standard NiFe. NiFeX consists of an alloy of NiFe andCu, Ag, or Au; the last of these is known to have very low resistivity.This solution leads to a significant lowering of the device’s resistance. A recent technological advance used to fabricate devices with lower resistance is to deposit a multilayer of AFM–FM.
  •  
9.
  • Redjai Sani, Sohrab (författare)
  • Fabrication and Characterization of Nanocontact Spin-Torque Oscillators
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The manufacturing of nanocontact-based spin-torque oscillators (NC-STOs)has opened the door for spintronic devices to play a part as active microwaveelements. The NC-STO has the capability of converting a direct current intoa microwave signal, and vice versa, by utilizing the spin transfer torque (STT)in ferromagnetic multilayer systems. However, the high-frequency operation ofNC-STOs typically requires high magnetic fields and the microwave power theygenerate is rather limited. As a result, NC-STOs are not yet commercially used,and they require improvements in both material systems and device geometriesbefore they can find actual use in microwave applications.In order to improve and advance this technology, NC-STOs are requiredwith both different nanocontact (NC) sizes and geometries, and using differ- ent stacks of magnetic materials. This dissertation presents experimental in- vestigations into the manufacturing of such devices using different fabrication techniques and a number of different magnetic material stacks. Currently, the fabrication of NC-STOs is limited to advanced laboratories, because NC fabri- cation requires high-resolution lithography tools. In the present work, we have developed an alternative method of fabrication, which does not require such tools and has the capability of fabricating NC-STOs having one to hundreds of NCs in a variety of sizes, possibly  down to 20 nm. Devices fabricated with this method have shown mutual synchronization of three parallel-connected NCs, and pairwise synchronization in devices with four and five NCs.Furthermore, the present work demonstrates low-field operation (down to0.02 Tesla) of NC-STOs at a record high frequency of 12 GHz. This wasachieved by implementing multilayers with a perpendicular magnetic anisotropy(PMA) material in the free layer of the NC-STO. In addition, the fabricateddevices revealed an unexpected dynamic regime under large external appliedfield (above 0.4 Tesla). The new dynamic regime was found to be due to anentirely novel nanomagnetic dynamic object â a so-called magnetic droplet soliton,predicted theoretically in 1977 but not experimentally observed until now.Detailed experiments and micromagnetic simulations show that the droplet hasvery rich dynamics.Finally,  spin-torque-induced  transverse spin wave instabilities have beenstudied.  A NC-STO with  a material stack consisting of a single ferromag- netic metal sandwiched between two non-ferromagnetic metals was fabricated. Prior to this work, evidence of spin wave instabilities was reported as resis- tance switching in nanopillar- and mechanical point contact based STOs. In the present  work, the fabricated NC-STOs showed actual microwave  signals up to 3 GHz under zero applied field with strong current hysteresis. All  the fabricated NC-STOs open up new means of studying STT in different environ- ments, in order to resolve their current drawbacks for industrial applications.
  •  
10.
  • Zhou, Yan, 1982- (författare)
  • Spin momentum transfer effects for spintronic device applications
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The recent discovery that a spin-polarized current can exert a large torque on a ferromagnet, through direct transfer of spin angular momentum, offers the possibility of electrical current controlled manipulation of magnetic moment in nanoscale magnetic device structures. This so-called spin torque effect holds great promise for two applications, namely, spin torque oscillators (STOs) for wireless communication and radar communication, and spin transfer torque RAM (STT-RAM) for data/information storage.   The STO is a nanosized spintronic device capable of microwave generation at frequencies in the 1-65 GHz range with high quality factors. Although the STO is very promising for future telecommunication, two major shortcomings have to be addressed before it can truly find practical use as a radio-frequency device. Firstly, its very limited output power has to be significantly improved. One possibility is the synchronization of two or more STOs to both increase the microwave power and further increase the signal quality. Synchronization of serially connected STOs has been suggested in this thesis. In this configuration, synchronization relies on phase locking between the STOs and their self-generated alternating current. While this locking mechanism is intrinsically quite weak, we find that the locking range of two serially connected spin-valve STOs can be enhanced by over two orders of magnitude by adjusting the circuit I-V phase to that of an intrinsic preferred phase shift between the STO and an alternating current. More recently, we have also studied the phase-locking of STOs based on magnetic tunnel junctions (MTJ-STO) to meet the power specifications of actual application where the rf output levels should be above 0 dBm (1 mW). In addition to the spin torque terms present in GMR spin valves, MTJs also exhibit a significant perpendicular spin torque component with a quite complex dependence on both material choices and applied junction bias. We find that the perpendicular torque component modifies the intrinsic preferred I-V phase shift in single MTJ-STOs in such a way that serially connected STOs synchronize much more readily without the need for additional circuitry to change the I-V phase.   Secondly, equal attention has been focused on removing the applied magnetic field for STO operation, which requires bulky components and will limit the miniaturization of STO-based devices. Various attempts have been made to realize STOs operating in zero magnetic field. By using a tilted (oblique angle) polarizer (fixed layer) instead of an in-plane polarizer (standard STO), we show zero field operation over a very wide polarizer angle range without sacrificing output signal. In addition, the polarizer angle introduces an entirely new degree of freedom to any spin torque device and opens up for a wide range of additional phenomena.   The STT-RAM has advantages over other types of memories including conventional MRAM in terms of power consumption, speed, and scalability. We use a set of simulation tools to carry out a systematic study on the subject of micromagnetic switching processes of a device for STT-RAM application. We find that the non-zero k spin wave modes play an important role in the experimentally measured switching phase boundary. These may result in telegraph transitions among different spin-wave states, and be related to the back-hopping phenomena where the switching probability will decrease with increasing bias in tunnel junctions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy