SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åkerström Bo) "

Sökning: WFRF:(Åkerström Bo)

  • Resultat 1-10 av 119
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlstedt, Jonas, et al. (författare)
  • Biodistribution and pharmacokinetics of recombinant α1-microglobulin and its potential use in radioprotection of kidneys.
  • 2015
  • Ingår i: American journal of nuclear medicine and molecular imaging. - 2160-8407. ; 5:4, s. 333-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptide-receptor radionuclide therapy (PRRT) is a systemically administrated molecular targeted radiation therapy for treatment of neuroendocrine tumors. Fifteen years of clinical use show that renal toxicity, due to glomerular filtration of the peptides followed by local generation of highly reactive free radicals, is the main side-effect that limits the maximum activity that can be administrated for efficient therapy. α1-microglobulin (A1M) is an endogenous radical scavenger shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. An important feature of A1M is that, following distribution to the blood, it is equilibrated to the extravascular compartments and filtrated in the kidneys. Aiming at developing renal protection against toxic side-effects of PRRT, we have characterized the pharmacokinetics and biodistribution of intravenously (i.v.) injected (125)I- and non-labelled recombinant human A1M and the (111)In- and fluorescence-labelled somatostatin analogue octreotide. Both molecules were predominantly localized to the kidneys, displaying a prevailing distribution in the cortex. A maximum of 76% of the injected A1M and 46% of the injected octreotide were present per gram kidney tissue at 10 to 20 minutes, respectively, after i.v. injection. Immunohistochemistry and fluorescence microscopy revealed a dominating co-existence of the two substances in proximal tubules, with a cellular co-localization in the epithelial cells. Importantly, analysis of kidney extracts displayed an intact, full-length A1M at least up to 60 minutes post-injection (p.i.). In summary, the results show a highly similar pharmacokinetics and biodistribution of A1M and octreotide, thus enabling the use of A1M to protect the kidneys tissue during PRRT.
  •  
2.
  • Nilson, Bo, et al. (författare)
  • Structure and stability of protein H and the M1 protein from Streptococcus pyogenes. Implications for other surface proteins of gram-positive bacteria
  • 1995
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 34:41, s. 13688-13698
  • Tidskriftsartikel (refereegranskat)abstract
    • M proteins and other members of the M protein family, expressed on the surface of Streptococcus pyogenes, bind host proteins such as immunoglobulins, albumin, and fibrinogen. Protein H and the M1 protein are expressed by adjacent genes and both belong to the M protein family. In this work, the structure and stability of these two proteins have been investigated. As judged from sequence analysis and circular dichroism spectroscopy, the proteins are almost entirely in an alpha-helix conformation. The amino acids are arranged in a seven-residue (heptad) repeat pattern along the greater part of the proteins. These observations support the previously accepted model of M proteins as coiled-coil dimers. However, it was also found that the structures of both proteins were thermally unstable; i.e., the content of helix conformation was greatly reduced at 37 degrees C as compared to 25 degrees C or below. Together with previous findings that these proteins appear as monomers at 37 degrees C and dimers at low temperatures, the results suggest that the coiled-coil dimers are unfolded at 37 degrees C. The heptad patterns of protein H and the M1 protein showed a nonoptimal distribution of residues expected for a coiled-coil conformation. This is a possible explanation for the low thermal stability of the proteins. It was also demonstrated that the proteins were stabilized in the presence of the ligands IgG and/or albumin. Protein H and M1 protein show a high degree of sequence similarity in their C-terminal regions, and a fragment from this region displayed a high content of helix conformation, whereas fragments from the nonsimilar N-terminal parts did not adopt any stable folded structure. Thus, the C-terminal parts, which are conserved within the M protein family, may constitute a framework for the formation of the parallel helical coiled-coil structure, and we propose that the less stable N-terminal part may also participate in antiparallel interaction with M proteins on adjacent bacteria. The results suggest that temperature fluctuations in the environment could change the properties of bacterial surface proteins, thereby affecting the molecular interactions between the bacterium and its host.
  •  
3.
  • Romantsik, Olga, et al. (författare)
  • The heme and radical scavenger α1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage
  • 2019
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with cerebro-cerebellar damage in very preterm infants, leading to neurodevelopmental impairment. Penetration, from the intraventricular space, of extravasated red blood cells and extracellular hemoglobin (Hb), to the periventricular parenchyma and the cerebellum has been shown to be causal in the development of brain injury following GM-IVH. Furthermore, the damage has been described to be associated with the cytotoxic nature of extracellular Hb-metabolites. To date, there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. Mechanisms previously described to cause brain damage following GM-IVH, i.e., oxidative stress and Hb-metabolite toxicity, suggest that the free radical and heme scavenger α1-microglobulin (A1M) may constitute a potential neuroprotective intervention. Methods: Using a preterm rabbit pup model of IVH, where IVH was induced shortly after birth in pups delivered by cesarean section at E29 (3 days prior to term), we investigated the brain distribution of recombinant A1M (rA1M) following intracerebroventricular (i.c.v.) administration at 24 h post-IVH induction. Further, short-term functional protection of i.c.v.-administered human A1M (hA1M) following IVH in the preterm rabbit pup model was evaluated. Results: Following i.c.v. administration, rA1M was distributed in periventricular white matter regions, throughout the fore- and midbrain and extending to the cerebellum. The regional distribution of rA1M was accompanied by a high co-existence of positive staining for extracellular Hb. Administration of i.c.v.-injected hA1M was associated with decreased structural tissue and mitochondrial damage and with reduced mRNA expression for proinflammatory and inflammatory signaling-related genes induced by IVH in periventricular brain tissue. Conclusions: The results of this study indicate that rA1M/hA1M is a potential candidate for neuroprotective treatment following preterm IVH.
  •  
4.
  • Åkerström, Tobias, et al. (författare)
  • Comprehensive Re-Sequencing of Adrenal Aldosterone Producing Lesions Reveal Three Somatic Mutations near the KCNJ5 Potassium Channel Selectivity Filter.
  • 2012
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 7:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Aldosterone producing lesions are a common cause of hypertension, but genetic alterations for tumorigenesis have been unclear. Recently, either of two recurrent somatic missense mutations (G151R or L168R) was found in the potassium channel KCNJ5 gene in aldosterone producing adenomas. These mutations alter the channel selectivity filter and result in Na(+) conductance and cell depolarization, stimulating aldosterone production and cell proliferation. Because a similar mutation occurs in a Mendelian form of primary aldosteronism, these mutations appear to be sufficient for cell proliferation and aldosterone production. The prevalence and spectrum of KCNJ5 mutations in different entities of adrenocortical lesions remain to be defined.
  •  
5.
  • Ahlstedt, Jonas, et al. (författare)
  • Human Anti-Oxidation Protein A1M-A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy.
  • 2015
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 16:12, s. 30309-30320
  • Forskningsöversikt (refereegranskat)abstract
    • Peptide receptor radionuclide therapy (PRRT) has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α₁-microglobulin (A1M) is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.
  •  
6.
  • Alattar, Abdul Ghani, et al. (författare)
  • Recombinant alpha(1)-Microglobulin (rA1M) Protects against Hematopoietic and Renal Toxicity, Alone and in Combination with Amino Acids, in a Lu-177-DOTATATE Mouse Radiation Model
  • 2023
  • Ingår i: Biomolecules. - 2218-273X. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Lu-177-DOTATATE peptide receptor radionuclide therapy (PRRT) is used clinically to treat metastasized or unresectable neuroendocrine tumors (NETs). Although Lu-177-DOTATATE is mostly well tolerated in patients, bone marrow suppression and long-term renal toxicity are still side effects that should be considered. Amino acids are often used to minimize renal radiotoxicity, however, they are associated with nausea and vomiting in patients. alpha (1)-microglobulin (A1M) is an antioxidant with heme- and radical-scavenging abilities. A recombinant form (rA1M) has previously been shown to be renoprotective in preclinical models, including in PRRT-induced kidney damage. Here, we further investigated rA1M's renal protective effect in a mouse Lu-177-DOTATATE model in terms of administration route and dosing regimen and as a combined therapy with amino acids (Vamin). Moreover, we investigated the protective effect of rA1M on peripheral blood and bone marrow cells, as well as circulatory biomarkers. Intravenous (i.v.) administration of rA1M reduced albuminuria levels and circulatory levels of the oxidative stress-related protein fibroblast growth factor-21 (FGF-21). Dual injections of rA1M (i.e., at 0 and 24 h post-Lu-177-DOTATATE administration) preserved bone marrow cellularity and peripheral blood reticulocytes. Administration of Vamin, alone or in combination with rA1M, did not show any protection of bone marrow cellularity or peripheral reticulocytes. In conclusion, this study suggests that rA1M, administered i.v. for two consecutive days in conjunction with Lu-177-DOTATATE, may reduce hematopoietic and kidney toxicity during PRRT with Lu-177-DOTATATE.
  •  
7.
  • Aleksenko, Larysa, et al. (författare)
  • Pregnant alpha-1-microglobulin (A1M) knockout mice exhibit features of kidney and placental damage, hemodynamic changes and intrauterine growth restriction
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha-1-microglobulin (A1M) is an antioxidant previously shown to be elevated in maternal blood during pregnancies complicated by preeclampsia and suggested to be important in the endogenous defense against oxidative stress. A knockout mouse model of A1M (A1Mko) was used in the present study to assess the importance of A1M during pregnancy in relation to the kidney, heart and placenta function. Systolic blood pressure (SBP) and heart rate (HR) were determined before and throughout gestation. The morphology of the organs was assessed by both light and electron microscopy. Gene expression profiles relating to vascular tone and oxidative stress were analyzed using RT-qPCR with validation of selected gene expression relating to vascular tone and oxidative stress response. Pregnant age-matched wild type mice were used as controls. In the A1Mko mice there was a significantly higher SBP before pregnancy that during pregnancy was significantly reduced compared to the control. In addition, the HR was higher both before and during pregnancy compared to the controls. Renal morphological abnormalities were more frequent in the A1Mko mice, and the gene expression profiles in the kidney and the heart showed downregulation of transcripts associated with vasodilation. Simultaneously, an upregulation of vasoconstrictors, blood pressure regulators, and genes for osmotic stress response, ion transport and reactive oxygen species (ROS) metabolism occurred. Fetal weight was lower in the A1Mko mice at E17.5. The vessels in the labyrinth zone of the placentas and the endoplasmic reticulum in the spongiotrophoblasts were collapsed. The gene profiles in the placenta showed downregulation of antioxidants, ROS metabolism and oxidative stress response genes. In conclusion, intact A1M expression is necessary for the maintenance of normal kidney, heart as well as placental structure and function for a normal pregnancy adaptation.
  •  
8.
  • Allhorn, Maria, et al. (författare)
  • Heme-Scavenging Role of alpha1-Microglobulin in Chronic Ulcers.
  • 2003
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier BV. - 1523-1747 .- 0022-202X. ; 121:3, s. 640-646
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic venous ulcers are characterized by chronic inflammation. Heme and iron, originating from blood cell hemolysis as well as extravascular necrosis, have been implicated as important pathogenic factors due to their promotion of oxidative stress. It was recently reported that the plasma and tissue protein alpha1-microglobulin is involved in heme metabolism. The protein binds heme, and a carboxy-terminally processed form, truncated alpha1-microglobulin, also degrades heme. Here, we show the presence of micromolar levels of heme and free iron in chronic leg ulcer fluids. Micromolar amounts of alpha1-microglobulin was also present in the ulcer fluids and bound to added radiolabeled heme. Truncated alpha1-microglobulin was found in the ulcer fluids and exogenously added alpha1-microglobulin was processed into the truncated alpha1-microglobulin form. Histochemical analysis of chronic wound tissue showed the presence of iron deposits, heme/porphyrins in infiltrating cells basement membranes and fibrin cuffs around vessels, and alpha1-microglobulin ubiquitously distributed but especially abundant in basement membranes around vessels and at fibrin cuffs. Our results suggest that alpha1-microglobulin constitutes a previously unknown defense mechanism against high heme and iron levels during skin wound healing. Excessive heme and iron, which are not buffered by alpha1-microglobulin, may underlie the chronic inflammation in chronic ulcers.
  •  
9.
  • Allhorn, Maria, et al. (författare)
  • Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties.
  • 2002
  • Ingår i: Blood. - 1528-0020. ; 99:6, s. 1894-1901
  • Tidskriftsartikel (refereegranskat)abstract
    • alpha(1)-Microglobulin is a 26-kd protein, widespread in plasma and tissues and well-conserved among vertebrates. alpha(1)-Microglobulin belongs to the lipocalins, a protein superfamily with highly conserved 3-dimensional structures, forming an internal ligand binding pocket. The protein, isolated from urine, has a heterogeneous yellow-brown chromophore bound covalently to amino acid side groups around the entrance of the lipocalin pocket. alpha(1)-Microglobulin is found in blood both in free form and complex-bound to immunoglobulin A (IgA) via a half-cystine residue at position 34. It is shown here that an alpha(1)-microglobulin species, which we name t-alpha(1)-microglobulin (t = truncated), with a free Cys34 thiol group, lacking its C-terminal tetrapeptide, LIPR, and with a more polar environment around the entrance of the lipocalin pocket, is released from IgA-alpha(1)-microglobulin as well as from free alpha(1)-microglobulin when exposed to the cytosolic side of erythrocyte membranes or to purified oxyhemoglobin. The processed t-alpha(1)-microglobulin binds heme and the alpha(1)-microglobulin-heme complex shows a time-dependent spectral rearrangement, suggestive of degradation of heme concomitantly with formation of a heterogeneous chromophore associated with the protein. The processed t-alpha(1)-microglobulin is found in normal and pathologic human urine, indicating that the cleavage process occurs in vivo. The results suggest that alpha(1)-microglobulin is involved in extracellular heme catabolism. (Blood. 2002;99:1894-1901)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 119
Typ av publikation
tidskriftsartikel (89)
konferensbidrag (15)
forskningsöversikt (10)
doktorsavhandling (2)
bokkapitel (2)
samlingsverk (redaktörskap) (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (105)
övrigt vetenskapligt/konstnärligt (13)
populärvet., debatt m.m. (1)
Författare/redaktör
Åkerström, Bo (113)
Gram, Magnus (58)
Hansson, Stefan (18)
Allhorn, Maria (13)
Kristiansson, Amanda (12)
Hansson, Stefan R. (12)
visa fler...
Forssell-Aronsson, E ... (10)
Andersson, Charlotte (10)
Mörgelin, Matthias (9)
Strand, Sven-Erik (8)
Olsson, Martin L (7)
Ahlstedt, Jonas (6)
Erlandsson, Lena (6)
Pallon, Jan (5)
Ley, David (5)
Örbom, Anders (4)
Schneider, H. (4)
Olofsson, Tor (4)
Nilsson, Charlotta (3)
Schmidtchen, Artur (3)
Altai, Mohamed (3)
Bülow, Leif (3)
Cinthio, Magnus (3)
Osmark, Peter (3)
Karlsson, Helena (3)
Rippe, Bengt (3)
Lindqvist, A (3)
Flygare, Johan (3)
Åkerström, Göran (3)
Elfman, Mikael (2)
Kristiansson, Per (2)
Strand, Joanna (2)
Marsal, Karel (2)
Sørensen, Ole E. (2)
Helou, Khalil, 1966 (2)
Johansson, Martin (2)
Rask, Lars (2)
Holmqvist, Bo (2)
Holmdahl, Rikard (2)
Tran, Thuy (2)
Hellman, Per (2)
Lögdberg, L (2)
Alattar, Abdul Ghani (2)
Storry, Jill (2)
Storry, Jill R (2)
Alayash, Abdu I. (2)
Åkerström, Magnus, 1 ... (2)
Cedervall, Tommy (2)
Westin, Gunnar (2)
Larsson, Jörgen (2)
visa färre...
Lärosäte
Lunds universitet (105)
Göteborgs universitet (13)
Uppsala universitet (5)
Umeå universitet (2)
Sveriges Lantbruksuniversitet (2)
Malmö universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (118)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (102)
Naturvetenskap (19)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy