SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ålgårdh Joakim 1984 ) "

Sökning: WFRF:(Ålgårdh Joakim 1984 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balachandramurthi, Arun Ramanathan, 1989-, et al. (författare)
  • Microstructure tailoring in Electron Beam Powder Bed Fusion Additive Manufacturing and its potential consequences
  • 2019
  • Ingår i: Results in Materials. - : Elsevier. - 2590-048X. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron Beam Powder Bed Fusion process for Alloy 718 was investigated, in the sense of microstructural evolution with varying process conditions. The existence of a geometric relationship between the melt front and the processing parameters was observed. By understanding and capitalizing on this relationship, it was possible to obtain columnar, equiaxed or bimodal microstructure.
  •  
2.
  • Karimi Neghlani, Paria, 1986-, et al. (författare)
  • Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization
  • 2021
  • Ingår i: Additive Manufacturing. - : ELSEVIER. - 2214-8604 .- 2214-7810. ; 46
  • Tidskriftsartikel (refereegranskat)abstract
    • Columnar grain structure typically formed along the build direction in the electron beam-powder bed fusion (EBPBF) technique leads to anisotropic physical and mechanical properties. In this study, casting solidification condition was mimicked, and in situ recrystallization was promoted in EB-PBF to facilitate columnar-to-equiaxed grain structure transition in Alloy 718. This is achieved via a unique linear melting strategy coupled with a specific selection of process parameters in EB-PBF. It was found that site-specific melting using line order number (LON) function affected the cooling rate and temperature gradient, which controlled grain morphology and texture. A high LON resulted in a large equiaxed grain zone with a random texture, whereas a fixed LON with a high areal energy density led to a strong texture. The main driving force in the formation of cracks and shrinkage defects during the transition was investigated. A high LON at a fixed areal energy density reduced the average total shrinkage defects and crack length. The hardness was decreased through the transition, which was linked to the reduction in the size of the gamma ‘’ precipitates.
  •  
3.
  • Karimi Neghlani, Paria, 1986-, et al. (författare)
  • EBM-manufactured single tracks of Alloy 718 : Influence of energy input and focus offset on geometrical and microstructural characteristics
  • 2019
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803 .- 1873-4189. ; 148, s. 88-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron beam melting-powder bed fusion (EBM-PBF) is an additive manufacturing process, which is able to produce parts in layer-by-layer fashion from a 3D model data. Currently application of this technology in parts manufacturing with high geometrical complexity has acquired growing interest in industry. To recommend the EBM process into industry for manufacturing parts, improved mechanical properties of final part must be obtained. Such properties highly depend on individual single melted track and single layer. In EBM, interactions between the electron beam, powder, and solid underlying layer affect the geometrical (e.g., re-melt depth, track width, contact angle, and track height) and microstructural (e.g., grain structure, and primary dendrite arm spacing) characteristics of the melted tracks. The core of the present research was to explore the influence of linear energy input parameters in terms of beam scanning speed, beam current as well as focus offset and their interactions on the geometry and microstructure of EBM-manufactured single tracks of Alloy 718. Increased scanning speed led to lower linear energy input values (<0.9 J/mm) in an specific range of the focus offset (0–10 mA) which resulted in instability, and discontinuity of the single tracks as well as balling effect. Decreasing the scanning speed and increasing the beam current resulted in higher melt pool depth and width. By statistical evaluations, the most influencing parameters on the geometrical features were primarily the scanning speed, and secondly the beam current. Primary dendrite arm spacing (PDAS) slightly decreased by increasing the scanning speed using lower beam current values as the linear energy input decreased. By increasing the linear energy input, the chance of more equiaxed grain formation was high, however, at lower linear energy input, mainly columnar grains were observed. The lower focus offset values resulted in more uniform grains along the 〈001〉 crystallographic direction.
  •  
4.
  • Karimi Neghlani, Paria, 1986-, et al. (författare)
  • Effect of build location on microstructural characteristics and corrosion behavior of EB-PBF built Alloy 718
  • 2020
  • Ingår i: The International Journal of Advanced Manufacturing Technology. - : Springer Science and Business Media LLC. - 0268-3768 .- 1433-3015. ; 106:7-8, s. 3597-3607
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron beam-powder bed fusion (EB-PBF), a high-temperature additive manufacturing (AM) technique, shows great promise in the production of high-quality metallic parts in different applications such as the aerospace industry. To achieve a higher build efficiency, it is ideal to build multiple parts together with as low spacing as possible between the respective parts. In the EB-PBF technique, there are many unknown variations in microstructural characteristics and functional performance that could be induced as a result of the location of the parts on the build plate, gaps between the parts and part geometry, etc. In the present study, the variations in the microstructure and corrosion performance as a function of the parts location on the build plate in the EB-PBF process were investigated. The microstructural features were correlated with the thermal history of the samples built in different locations on the build plate, including exterior (the outermost), middle (between the outermost and innermost), and interior (the innermost) regions. The cubic coupons located in the exterior regions showed increased level (~ 20 %) of defects (mainly in the form of shrinkage pores) and lower level (~ 30-35 %) of Nb-rich phase fraction due to their higher cooling rates compared to the interior and middle samples. Electrochemical investigations showed that the location indirectly had a substantial influence on the corrosion behavior, verified by a significant increase in polarization resistance (Rp) from the exterior (2.1 ± 0.3 kΩ.cm2) to interior regions (39.2 ± 4.1 kΩ.cm2). © 2020, The Author(s).
  •  
5.
  • Karimi Neghlani, Paria, 1986- (författare)
  • Electron beam melting of Alloy 718 : Influence of process parameters on the microstructure
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive manufacturing (AM) is the name given to the technology of building 3D parts by adding layer-by-layer of materials, including metals, plastics, concrete, etc. Of the different types of AM techniques, electron beam melting (EBM), as a powder bed fusion technology, has been used in this study. EBM is used to build parts by melting metallic powders by using a highly intense electron beam as the energy source. Compared to a conventional process, EBM offers enhanced efficiency for the production of customized and specific parts in aerospace, space, and medical fields. In addition, the EBM process is used to produce complex parts for which other technologies would be either expensive or difficult to apply. This thesis has been divided into three sections, starting from a wider window and proceeding to a smaller one. The first section reveals how the position-related parameters (distance between samples, height from build plate, and sample location on build plate) can affect the microstructural characteristics. It has been found that the gap between the samples and the height from the build plate can have significant effects on the defect content and niobium-rich phase fraction. In the second section, through a deeper investigation, the behavior of Alloy 718 during the EBM process as a function of different geometry-related parameters is examined by building single tracks adjacent to each other (track-by-track) andsingle-wall samples (single tracks on top of each other). In this section, the main focus is to understand the effect of successive thermal cycling on microstructural evolution. In the final section, the correlations between the main machine-related parameters (scanning speed, beam current, and focus offset) and the geometrical (melt pool width, track height, re-melted depth, and contact angle) and microstructural (grain structure, niobium-rich phase fraction, and primary dendrite arm spacing) characteristics of a single track of Alloy 718 have been investigated. It has been found that the most influential machine-related parameters are scanning speed and beam current, which have significant effects on the geometry and the microstructure of the single-melted tracks.
  •  
6.
  • Karimi Neghlani, Paria, 1986- (författare)
  • Electron beam-powder bed fusion of Alloy 718 : Effect of process parameters on microstructure evolution
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive manufacturing (AM) is the technology of building 3D parts through layer-by-layer addition of material. Of the different types of AM techniques, electron beam-powder bed fusion (EB-PBF) has been used in this study. EB-PBF can build parts by melting metallic powders using an electron beam as the energy source. Compared to conventional manufacturing processes, EB-PBF offers a convenient approach and enhanced efficiency in producing customized and specific parts in the aerospace, space, automotive, and medical fields. In addition, the EB-PBF process is used to produce complex parts with less residual stress due to the high-temperature environment within the process.This thesis has been divided into four stages. In the first stage, the behavior of Alloy 718 during the EB-PBF process as a function of different geometry-related parameters is examined by building single tracks adjacent to each other (track-by track) and single tracks on top of each other (single-wall samples). In this stage,the focus is on understanding the effect of successive thermal cycling on microstructural evolution. In the second stage, the effect of the position-related parameters–including the distance or gap between samples, height from the build plate (in the Z direction), and sample location on the build plate (in the X–Y plane) –on the microstructural characteristics, are revealed. These three position related parameters can have significant effects on the defect content and niobium rich phase fraction. In the third stage, the correlations between the main machinerelated parameters, geometric (melt pool width, track height, remelted depth, and contact angle), and microstructural (grain structure, niobium-rich phase fraction,and primary dendrite arm spacing) characteristics of a single track are delineated.The results obtained in stages one to three were used as a guideline for the reduction of the internal–external defects and columnar-to-equiaxed transition(CET) in the grain structure of a typical cubic part. The final stage reveals two different strategies that were developed using machine-related parameters (scanning speed, beam current, focus offset, line offset, and line order number) to tailor the grain structures. All investigated parameters with respect to the proper selection of the processing window played a critical role in the solidification parameters (thermal gradient, growth rate, and cooling rate) on the solidification front, which could induce formation of more fine equiaxed grains.
  •  
7.
  • Karimi Neghlani, Paria, 1986-, et al. (författare)
  • Influence of successive thermal cycling on microstructure evolution of EBM-manufactured alloy 718 in track-by-track and layer-by-layer design
  • 2018
  • Ingår i: Materials & design. - : Elsevier BV. - 0264-1275 .- 1873-4197. ; 160, s. 427-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Successive thermal cycling (STC) during multi-track and multi-layer manufacturing of Alloy 718 using electron beam melting (EBM) process leads to a microstructure with a high degree of complexity. In the present study, a detailed microstructural study of EBM-manufactured Alloy 718 was conducted by producing samples in shapes from one single track and single wall to 3D samples with maximum 10 longitudinal tracks and 50 vertical layers. The relationship between STC, solidification microstructure, interdendritic segregation, phase precipitation (MC, δ-phase), and hardness was investigated. Cooling rates (liquid-to-solid and solid-to-solid state) was estimated by measuring primary dendrite arm spacing (PDAS) and showed an increased cooling rate at the bottom compared to the top of the multi-layer samples. Thus, microstructure gradient was identified along the build direction. Moreover, extensive formation of solidification micro-constituents including MC-type carbides, induced by micro-segregation, was observed in all the samples. The electron backscatter diffraction (EBSD) technique showed a high textured structure in 〈001〉 direction with a few grains misoriented at the surface of all samples. Finer microstructure and possibility of more γ″ phase precipitation at the bottom of the samples resulted in slightly higher (~11%) hardness values compared to top of the samples.
  •  
8.
  • Karimi Neghlani, Paria, 1986-, et al. (författare)
  • Microstructure Development in Track-by-Track Melting of EBM-Manufactured Alloy 718
  • 2018
  • Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 &amp; Derivatives. - Cham : Springer. - 9783319894799 - 9783319894805 ; , s. 643-654
  • Konferensbidrag (refereegranskat)abstract
    • Electron beam melting (EBM) is a powder-bed fusion process within the group of additive manufacturing (AM) technology that is used to fabricate high performance metallic parts. Nickel-Iron base superalloys, such as Alloy 718, are subjected to successive heating and cooling at temperatures in excess of 800 °C during the EBM process. Characterization of the dendritic structure, carbides, Laves and δ-phase were of particular interest in this study. These successive thermal cycles influence the microstructure of the material resulting in a heterogeneous structure, especially in the building direction. Hence, the aim of this study was to gain increased fundamental understanding of the relationship between the processing history and the microstructure formed within a single layer. Different numbers of tracks with equal heights were for this purpose produced, varying from one to ten tracks. All tracks used the same process parameters regardless of number and/or position. Microstructure characteristics (sub-grain structure, grain structure and phases) were analyzed by optical microscopy, scanning electron microscopy equipped with energy disperse spectroscopy and electron backscatter diffraction. The direction of dendrites changed in the overlap zones within the tracks due to re-melting of material in the overlap zone. The primary dendrite arm spacings slightly increased along multi-tracks owing to a slight decrease in cooling rate by addition of the next tracks. Epitaxial growth of grains were observed in all samples due to partial re-melting of grains in previous layers and surface nucleation was also found to occur in all tracks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy