SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åsander Frostner Eleonor) "

Sökning: WFRF:(Åsander Frostner Eleonor)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Avram, Vlad F., et al. (författare)
  • Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Statin Toxicity
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mito-chondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.
  •  
2.
  • Bețiu, Alina M., et al. (författare)
  • Cell‐permeable succinate rescues mitochondrial respiration in cellular models of amiodarone toxicity
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Amiodarone is a potent antiarrhythmic drug and displays substantial liver toxicity in hu-mans. It has previously been demonstrated that amiodarone and its metabolite (desethylamioda-rone, DEA) can inhibit mitochondrial function, particularly complexes I (CI) and II (CII) of the elec-tron transport system in various animal tissues and cell types. The present study, performed in human peripheral blood cells, and one liver‐derived human cell line, is primarily aimed at assessing the concentration‐dependent effects of these drugs on mitochondrial function (respiration and cellular ATP levels). Furthermore, we explore the efficacy of a novel cell‐permeable succinate prodrug in alleviating the drug‐induced acute mitochondrial dysfunction. Amiodarone and DEA elicit a con-centration‐dependent impairment of mitochondrial respiration in both intact and permeabilized platelets via the inhibition of both CI‐ and CII‐supported respiration. The inhibitory effect seen in human platelets is also confirmed in mononuclear cells (PBMCs) and HepG2 cells. Additionally, amiodarone elicits a severe concentration‐dependent ATP depletion in PBMCs, which cannot be explained solely by mitochondrial inhibition. The succinate prodrug NV118 alleviates the respiratory deficit in platelets and HepG2 cells acutely exposed to amiodarone. In conclusion, amiodarone severely inhibits metabolism in primary human mitochondria, which can be counteracted by in-creasing mitochondrial function using intracellular delivery of succinate.
  •  
3.
  • Casslén, Vera, et al. (författare)
  • Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms.
  • 2009
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 1095-6859 .- 0090-8258. ; 115, s. 121-126
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Expression of uPA mRNA is massively up-regulated in the stroma of poorly differentiated ovarian tumors. We hypothesized that this expression was induced by paracrine signals from the epithelial tumor cells, and established an in vitro model of ovarian cancer microenvironment to study intercellular cross-talk. METHODS: ES-2 clear cell carcinoma cells were grown in tissue culture inserts in a double-chamber system with fibroblastic stromal LEP cells embedded in Matrigel. Binding-site directed antibodies were used to neutralize soluble cytokines in ES-2 conditioned medium (CM) before incubation with LEP cells. Real time PCR measured uPA mRNA in LEP cells, as well as mRNA for cytokines in both cell types. RESULTS: Co-culture with ES-2 cells as well as incubation with ES-2 CM induced uPA mRNA in LEP cells about two-fold. In short time (12 h) incubation of LEP cells with CM, antibodies to EGF and bFGF reduced induction of uPA mRNA, suggesting that these cytokines function as paracrine signals. EGF mRNA and bFGF mRNA were also found in ES-2 cells. At longer incubation (24 h) antibodies to bFGF, HB-EGF, HGF, IGF-1, and IL-1alpha reduced uPA mRNA induction, suggesting an autocrine function for these cytokines in LEP cells. In fact, expression of the same five cytokines was up-regulated in LEP cells exposed to CM. CONCLUSION: We identified two cytokines as paracrine signals, and five cytokines as autocrine signals in ovarian cancer cell induced up-regulation of uPA mRNA in stromal fibroblastic cells. It is crucial to understand intra-tumoral cross-talk, since it can offer new therapeutic approaches.
  •  
4.
  • Chumarina, Margarita, et al. (författare)
  • Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene
  • 2019
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in the POLG1 gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma, have recently been associated with Parkinson's disease (PD), especially in patients diagnosed with progressive external ophthalmoplegia (PEO). However, the majority of the studies reporting this association mainly focused on the genetic identification of the variation in POLG1 in PD patient primary cells, and determination of mitochondrial DNA copy number, providing little information about the cellular alterations existing in patient brain cells, in particular dopaminergic neurons. Therefore, through the use of induced pluripotent stem cells (iPSCs), we assessed cellular alterations in novel p.Q811R POLG1 (POLG1Q811R) variant midbrain dopaminergic neuron-containing spheroids (MDNS) from a female patient who developed early-onset PD, and compared them to cultures derived from a healthy control of the same gender. Both POLG1 variant and control MDNS contained functional midbrain regionalized TH/FOXA2-positive dopaminergic neurons, capable of releasing dopamine. Western blot analysis identified the presence of high molecular weight oligomeric alpha-synuclein in POLG1Q811R MDNS compared to control cultures. In order to assess POLG1Q811R-related cellular alterations within the MDNS, we applied mass-spectrometry based quantitative proteomic analysis. In total, 6749 proteins were identified, with 61 significantly differentially expressed between POLG1Q811R and control samples. Pro-And anti-inflammatory signaling and pathways involved in energy metabolism were altered. Notably, increased glycolysis in POLG1Q811R MDNS was suggested by the increase in PFKM and LDHA levels and confirmed using functional analysis of glycolytic rate and oxygen consumption levels. Our results validate the use of iPSCs to assess cellular alterations in relation to PD pathogenesis, in a unique PD patient carrying a novel p.Q811R variation in POLG1, and identify several altered pathways that may be relevant to PD pathogenesis.
  •  
5.
  • Ehinger, Johannes K., et al. (författare)
  • Cell-permeable succinate prodrugs bypass mitochondrial complex i deficiency
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [ 13 C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.
  •  
6.
  • Ehinger, Johannes K., et al. (författare)
  • Mitochondrial function in peripheral blood cells across the human lifespan
  • 2024
  • Ingår i: npj Aging. - 2731-6068. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial dysfunction is considered a hallmark of aging. Up to now, a gradual decline of mitochondrial respiration with advancing age has mainly been demonstrated in human muscle tissue. A handful of studies have examined age-related mitochondrial dysfunction in human blood cells, and only with small sample sizes and mainly in platelets. In this study, we analyzed mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and platelets from 308 individuals across the human lifespan (0–86 years). In regression analyses, with adjustment for false discovery rate (FDR), we found age-related changes in respiratory measurements to be either small or absent. The main significant changes were an age-related relative decline in complex I-linked respiration and a corresponding rise of complex II-linked respiration in PBMCs. These results add to the understanding of mitochondrial dysfunction in aging and to its possible role in immune cell and platelet senescence.
  •  
7.
  • Gnaiger, Erich, et al. (författare)
  • Mitochondrial respiratory states and rates
  • 2019
  • Ingår i: MitoFit Preprint Arch.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow guidelines of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of databases of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery.
  •  
8.
  • Nääv, Åsa, et al. (författare)
  • Urban PM2.5 Induces Cellular Toxicity, Hormone Dysregulation, Oxidative Damage, Inflammation, and Mitochondrial Interference in the HRT8 Trophoblast Cell Line
  • 2020
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Epidemiological studies have found air pollution to be a driver of adverse pregnancy outcomes, including gestational diabetes, low term birth weight and preeclampsia. It is unknown what biological mechanisms are involved in this process. A first trimester trophoblast cell line (HTR-8/SVneo) was exposed to various concentrations of PM2.5 (PM2.5) in order to elucidate the effect of urban particulate matter (PM) of size <2.5 μm on placental function. Methods: PM2.5 were collected at a site representative of urban traffic and dispersed in cell media by indirect and direct sonication. The HTR-8 cells were grown under standard conditions. Cellular uptake was studied after 24 and 48 h of exposure by transmission electron microscopy (TEM). The secretion of human chorionic gonadotropin (hCG), progesterone, and Interleukin-6 (IL-6) was measured by ELISA. Changes in membrane integrity and H2O2 production were analyzed using the CellToxTM Green Cytotoxicity and ROSGloTM assays. Protease activity was evaluated by MitoToxTM assay. Mitochondrial function was assessed through high resolution respirometry in an Oroboros O2k-FluoRespirometer, and mitochondrial content was quantified by citrate synthase activity. Results: TEM analysis depicted PM2.5 cellular uptake and localization of the PM2.5 to the mitochondria after 24 h. The cells showed aggregated cytoskeleton and generalized necrotic appearance, such as chromatin condensation, organelle swelling and signs of lost membrane integrity. The mitochondria displayed vacuolization and disruption of cristae morphology. At 48 h exposure, a significant drop in hCG secretion and a significant increase in progesterone secretion and IL-6 production occurred. At 48 h exposure, a five-fold increase in protease activity and a significant alteration of H2O2 production was observed. The HTR-8 cells exhibited evidence of increased cytotoxicity with increasing exposure time and dose of PM2.5. No significant difference in mitochondrial respiration or mitochondrial mass could be demonstrated. Conclusion: Following exposure to air pollution, intracellular accumulation of PM may contribute to the placental dysfunction associated with pregnancy outcomes, such as preeclampsia and intrauterine growth restriction, through their direct and indirect effects on trophoblast protein secretion, hormone regulation, inflammatory response, and mitochondrial interference.
  •  
9.
  • Piel, Sarah, et al. (författare)
  • Bioenergetic bypass using cell-permeable succinate, but not methylene blue, attenuates metformin-induced lactate production
  • 2018
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Metformin is the most common pharmacological treatment for type 2 diabetes. It is considered safe but has been associated with the development of lactic acidosis under circumstances where plasma concentrations exceed therapeutic levels. Metformin-induced lactic acidosis has been linked to the drug's toxic effect on mitochondrial function. Current treatment strategies aim to remove the drug and correct for the acidosis. With a mortality of 20%, complementary treatment strategies are needed. In this study, it was investigated whether targeting mitochondria with pharmacological agents that bypass metformin-induced mitochondrial dysfunction can counteract the energetic deficit linked to toxic doses of metformin.METHODS: The redox agent methylene blue and the cell-permeable succinate prodrug NV118 were evaluated by measuring mitochondrial respiration and lactate production of human platelets exposed to metformin and co-treated with either of the two pharmacological bypass agents.RESULTS: The cell-permeable succinate prodrug NV118 increased mitochondrial respiration which was linked to phosphorylation by the ATP-synthase and alleviated the increase in lactate production induced by toxic doses of metformin. The redox agent methylene blue, in contrast, failed to mitigate the metformin-induced changes in mitochondrial respiration and lactate generation.CONCLUSIONS: The cell-permeable succinate prodrug NV118 bypassed the mitochondrial dysfunction and counteracted the energy deficit associated with toxic doses of metformin. If similar effects of NV118 prove translatable to an in vivo effect, this pharmacological strategy presents as a promising complementary treatment for patients with metformin-induced lactic acidosis.
  •  
10.
  • Sjövall, Fredrik, et al. (författare)
  • Cytokine and nitric oxide levels in patients with sepsis - temporal evolvement and relation to platelet mitochondrial respiratory function.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The levels of nitric oxide (NO) and various cytokines are known to be increased during sepsis. These signaling molecules could potentially act as regulators and underlie the enhancement of mitochondrial function described in the later phase of sepsis. Therefore, we investigated the correlation between observed changes in platelet mitochondrial respiration and a set of pro- and anti-inflammatory cytokines as well as NO plasma levels in patients with sepsis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy