SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Åslund Magnus) "

Sökning: WFRF:(Åslund Magnus)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • A photon-counting detector for dual-energy breast tomosynthesis
  • 2009
  • Ingår i: Medical Imaging 2009. - : SPIE. ; , s. 72581-
  • Konferensbidrag (refereegranskat)abstract
    • We present the first evaluation of a recently developed silicon-strip detector for photon-counting dual-energy breast tomosynthesis. The detector is well suited for tomosynthesis with high dose efficiency and intrinsic scatter rejection. A method was developed for measuring the spatial resolution of a system based on the detector in terms of the three-dimensional modulation transfer function (MTF). The measurements agreed well with theoretical expectations, and it was seen that depth resolution was won at the cost of a slightly decreased lateral resolution. This may be a justifiable trade-off as clinical images acquired with the system indicate improved conspicuity of breast lesions. The photon-counting detector enables dual-energy subtraction imaging with electronic spectrumsplitting. This improved the detectability of iodine in phantom measurements, and the detector was found to be stable over typical clinical acquisition times. A model of the energy resolution showed that further improvements are witn reach by optimization of the detector.
  •  
2.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Contrast-enhanced spectral mammography with a photon-counting detector
  • 2010
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 37:5, s. 2017-2029
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. In particular, the detectability of a contrast agent can be improved over a lumpy background. We have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved imaging was studied.Methods: A framework for system characterization was set up that included quantum and anatomical noise, and a theoretical model of the system was benchmarked to phantom measurements.Results: It was found that optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, and an ideal-observer detectability index could be improved more than a factor of two compared to absorption imaging in the phantom study. In the clinical case, an improvement close to 80% was predicted for an average glandularity breast, and a factor of eight for dense breast tissue. Another 70% was found to be within reach for an optimized system.Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements.
  •  
3.
  • Cederström, Björn, et al. (författare)
  • Observer-model optimization of X-ray system in photon-counting breast imaging
  • 2011
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 648:Supplement 1, s. S54-S57
  • Tidskriftsartikel (refereegranskat)abstract
    • An ideal-observer model is applied to optimize the design of an X-ray tube intended for use in a multi-slit scanning photon-counting mammography system. The design is such that the anode and the heel effect are reversed and the projected focal spot is smallest at the chest wall. Using linear systems theory, detectability and dose efficiency for a 0.1-mm disk are calculated for different focal spot sizes and anode angles. It is shown that the image acquisition time can be reduced by about 25% with spatial resolution and dose efficiency improved near the chest wall and worsened further away. The image quality is significantly more homogeneous than for the conventional anode orientation, both with respect to noise and detectability of a small object. With the tube rotated 90°, dose efficiency can be improved by 20% for a fixed image acquisition time. 
  •  
4.
  • Fahlcrantz, Carl-Magnus, et al. (författare)
  • The Influence of Mean Reflectance on Perceived Print Mottle
  • 2003
  • Ingår i: Journal of Imaging Science And Technology. - 8750-9237. ; 47:1, s. 54-59
  • Tidskriftsartikel (refereegranskat)abstract
    • The perceived magnitude of a stimulus detected by the human visual system is, according to Fechner's Law, proportional to the logarithm of its physical intensity. This suggests that the perceived mottle in a printed image depends not only on the reflectance variation of the image, but also on its mean reflectance level. One possible approach is therefore to use the reflectance variation divided by the mean reflectance level, dR/R, as an estimate of the perceived mottle in an image. However, practical use of this method indicates that perceived mottle may be overestimated in dark and underestimated in light images. The present study therefore attempts to establish a better relationship between perceived mottle and mean reflectance level. A set of halftone patches was constructed by digital simulation, and then visually evaluated. Results suggest that the measured variation should be divided by a power function, with an exponent less than 1, of the mean reflectance to obtain the best correlation between visual and instrumental evaluation. The highest correlation was attained using the inverse square root, i.e., an exponent equal to 0.5.
  •  
5.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • A Tunable Energy Filter for Medical X-Ray Imaging
  • 2008
  • Ingår i: X-Ray Optics and Instrumentation. - : Hindawi. - 1687-7632 .- 1687-7640. ; 2008
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiprism lens (MPL) is a refractive X-ray lens, and its chromatic properties can be employed in an energy filtering setup to obtain a narrow tunable X-ray spectrum. We present the first evaluation of such a filter for medical X-ray imaging. The experimental setup yields a 6.6 gain of flux at 20 keV, and we demonstrate tunability by altering the energy spectrum to center also around 17 and 23 keV. All measurements are found to agree well with ray-tracing and a proposed geometrical model. Compared to a model mammography system with absorption filtering, the experimental MPL filter reduces dose 13–25% for 3–7 cm breasts if the spectrum is centered around the optimal energy. Additionally, the resolution is improved 2.5 times for a 5 cm breast. The scan time is increased 3 times but can be reduced with a slightly decreased energy filtering and resolution.
  •  
6.
  • Fredenberg, Erik, 1979-, et al. (författare)
  • An efficient pre-object collimator based on an x-ray lens
  • 2009
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 36:2, s. 626-633
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiprism lens (MPL) is a refractive x-ray lens with one-dimensional focusing properties. If used as a pre-object collimator in a scanning system for medical x-ray imaging, it reduces the divergence of the radiation and improves on photon economy compared to a slit collimator. Potential advantages include shorter acquisition times, a reduced tube loading, or improved resolution. We present the first images acquired with a MPL in a prototype for a scanning mammography system. The lens showed a gain of flux of 1.32 compared to a slit collimator at equal resolution, or a gain in resolution of 1.31–1.44 at equal flux. We expect the gain of flux in a clinical setup with an optimized MPL and a custom-made absorption filter to reach 1.67, or 1.45–1.54 gain in resolution.
  •  
7.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses
  • 2008
  • Ingår i: Medical Imaging 2008 - Physics of Medical Imaging. - San Diego, CA, USA : SPIE. - 9780819470973 ; , s. 91310-91310
  • Konferensbidrag (refereegranskat)abstract
    • Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted, resulting in suppression of the signal from the tissue background and a relative enhancement of the signal from the agent. Although promising, DES is still not widely used in clinical practice. One reason may be the need for two distinctly separated x-ray spectra that are still close to the absorption edge, realized through dual exposures which may introduce motion unsharpness. In this study, electronic spectrum-splitting with a silicon-strip detector is theoretically and experimentally investigated for a mammography model with iodinated contrast agent. Comparisons are made to absorption imaging and a near-ideal detector using a signal-to-noise ratio that includes both statistical and structural noise. Similar to previous studies, heavy absorption filtration was needed to narrow the spectra at the expense of a large reduction in x-ray flux. Therefore, potential improvements using a chromatic multi-prism x-ray lens (MPL) for filtering were evaluated theoretically. The MPL offers a narrow tunable spectrum, and we show that the image quality can be improved compared to conventional filtering methods.
  •  
8.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Energy resolution of a photon-counting silicon strip detector
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; , s. 156-162
  • Tidskriftsartikel (refereegranskat)abstract
    • A photon-counting silicon strip detector with two energy thresholds was investigated for spectral X-ray imaging in a mammography system. Preliminary studies already indicate clinical benefit of the detector, and the purpose of the present study is optimization with respect to energy resolution. Factors relevant for the energy response were measured, simulated, or gathered from previous studies, and used as input parameters to a cascaded detector model. Threshold scans over several X-ray spectra were used to calibrate threshold levels to energy, and to validate the model. The energy resolution of the detector assembly was assessed to range over ΔE/E=0.12–0.26 in the mammography region. Electronic noise dominated the peak broadening, followed by charge sharing between adjacent detector strips, and a channel-to-channel threshold spread. The energy resolution may be improved substantially if these effects are reduced to a minimum. Anti-coincidence logic mitigated double counting from charge sharing, but erased the energy resolution of all detected events, and optimization of the logic is desirable. Pile-up was found to be of minor importance at typical mammography rates.
  •  
9.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach
  • 2012
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 39:9, s. 5317-5335
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3-4 at equal dose, whereas absorption contrast was the preferred method for structures larger than similar to 0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further. Talbot interferometry favored detection of "sharp" as opposed to "smooth" structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography.
  •  
10.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Imaging with multi-prism x-ray lenses
  • 2008
  • Ingår i: Medical Imaging 2008 - Physics of Medical Imaging. - : SPIE. - 9780819470973 ; , s. 91308-91308
  • Konferensbidrag (refereegranskat)abstract
    • The multi-prism lens (MPL) is a refractive x-ray lens consisting of two rows of prisms facing each other at an angle. Rays entering the lens at the periphery will encounter a larger number of prisms than will central ones, hence experiencing a greater refraction. The focusing effect of the MPL can be used to gather radiation from a large aperture onto a smaller detector, and accordingly to make better use of the available x-ray flux in medical x-ray imaging. Potential advantages of a better photon economy include shorter acquisition times, a reduced tube loading, or an improved resolution. Since the focusing effect is one-dimensional it matches the design of scanning systems. In this study we present the first images acquired with an MPL instead of the pre-breast slit collimator in a scanning mammography system. According to the measurements, the MPL is able to increase the flux 32% at equal resolution compared to the slit collimator, or to improve the resolution 2.4 mm(-1) at equal flux. If used with a custom-made absorption filter in a clinical set-up, the gain of flux of the MPL is expected to be at least 45%, and the corresponding improvement in resolution to be 3 mm(-1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy