SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Çelik Ali İhsan) "

Sökning: WFRF:(Çelik Ali İhsan)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Çelik, Ali İhsan, et al. (författare)
  • Mechanical performance of geopolymer concrete with micro silica fume and waste steel lathe scraps
  • 2023
  • Ingår i: Case Studies in Construction Materials. - : Elsevier. - 2214-5095. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental studies for solutions are among the most important agendas of the scientific world. Most of the new studies are taking into account environmental effects. However, it is interesting for the scientific world to find solutions for accumulated environmental problems, to reduce harmful production, and to turn wastes that cause environmental pollution into useful products. In addition to incorporating fly ash, a recognized environmentally friendly and sustainable material, geopolymer concrete, utilizes micro silica fume (micro silica) as a binding agent. Furthermore, waste lathe scraps are introduced to enhance and safeguard the concrete’s mechanical properties. During the preparation phase, significant enhancements have been identified in the workability and setting time of concrete. A total of 16 test samples were prepared in this study. Micro silica of 0%, 5%, 10%, and 20%, and lathe scraps of 0%, 1%, 2%, and 3% were examined. Experimental findings revealed that incorporating 5% micro silica resulted in notable improvements in the compressive, flexural, and splitting tensile strengths, with the increases of 14.4%, 7.45%, and 6.18%, respectively. However, higher additions of 10% and 20% were found to decrease these strengths. In contrast, the inclusion of 1% lathe scraps led to considerable increases in the compressive, flexural, and splitting tensile strengths by 11.4%, 6.35%, and 8.23%, respectively. However, the addition of 2% and 3% lathe scraps resulted in the reduced capacity. The findings demonstrated that combining 5% micro silica with 1% lathe scraps provided the highest strength, with the improvements of 25.7%, 14.4%, and 12% in the compressive, flexural,and splitting tensile strengths, respectively. Considering the enhancements in the workability, setting time, and strengths observed in all the tests, the recommended optimal geopolymer mixture is 5% micro silica together with 1% lathe scraps. 
  •  
2.
  • Çelik, Ali İhsan, et al. (författare)
  • Use of waste glass powder toward more sustainable geopolymer concrete
  • 2023
  • Ingår i: Journal of Materials Research and Technology. - : Elsevier. - 2238-7854 .- 2214-0697. ; 24, s. 8533-8546
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of waste glass powder (WGP) with fly ash in certain proportions on geopolymer concrete (GPC) was investigated by exchanging different proportions of molarity and WGP percentages in GPC. For this objective, fly ash was altered with WGP having percentages of 10%, 20%, 30%, and 40%, and the effect of molarity of sodium hydroxide (NaOH) was examined. The compressive strength tests, splitting tensile tests, and flexural strength tests were conducted. The workability and setting time were also evaluated. With the addition of WGP, the workability for molarities (M) of 11, 13, and 16 NaOH reduced by an average of 17%, 10%, and 67%, respectively. The findings showed that the slump values decreased as the molarity and WGP percentages increased. Molarity significantly affected the setting time, but WGP had no effect on the setting time. Although high molarity increased the capacity, this had a noticeable negative effect on the setting time and workability. This study demonstrated that WGP had a slight negative effect on the capacity and workability. Furthermore, when the combined effects of WGP and NaOH molarity were taken into account, the use of 10% WGP with M13 NaOH was recommended to obtain the optimum sustainable GPC considering both fresh and hardening properties. Scanning electron microscopy (SEM) analysis was done on the samples, too.
  •  
3.
  • Özkılıç, Yasin Onuralp, et al. (författare)
  • Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete
  • 2023
  • Ingår i: Journal of Materials Research and Technology. - : Elsevier. - 2238-7854 .- 2214-0697. ; 25, s. 4799-4819
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, waste marble powder (WMP) was used to replace cement of concrete in specific amounts. To accomplish this aim, WMP was replaced at 10%, 20%, 30%, and 40% of the cement weight, and a reference concrete sample without WMP (REF) was created to compare the compressive strength, splitting tensile strength, and flexural strength. The replacement of WMP at 10%, 20%, 30%, and 40% of the cement weight resulted in 5.7%, 21.7%, 38.1%, and 43.6% decreases in the compressive strength compared with REF. Furthermore, the splitting tensile strength results commonly followed the same trend as the compressive strength. However, WMP at 10%, 20%, 30%, and 40% led to 5.3%, 8.6%, 19.4%, and 26.7% decreases in the flexural strength compared with REF. In addition, three different calculations, ranging from simple to complex, were proposed to compute mechanical resistances of concrete with WMP. These proposed calculations for practical applications were validated using values from the literature and the implications obtained from the current research. While the simple calculations were based on the strength of REF and the WMP percentages, the complex calculations were dependent on the design of the concrete mixture, age of the samples, and the WMP percentages. For the complex calculations, the ANN approach was used with the help of the coefficient of determination (R2) for the K-fold cross validation method. All the proposed methods provided high accurate estimation to predict the properties of concrete with WMP. Based on the studies, utilizing 10% WMP as the replacement of cement is recommended to obtain the optimum benefits considering both mechanical and environmental aspects. Moreover, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses were then conducted to observe the interaction of WMP in concrete. According to the SEM analyses, some pores were detected and the interfacial transition zone was observed in the reaction zone. On the other hand, based on the EDX analyses, the presence of WMP in concrete was manifested by the presence of high levels of calcium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy