SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ó Cofaigh Colm) "

Sökning: WFRF:(Ó Cofaigh Colm)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bentley, Michael J., et al. (författare)
  • A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 100, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse la. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.
  •  
2.
  • Larter, Robert D., et al. (författare)
  • Reconstruction of changes in the Amundsen Sea and BellingshausenSea sector of the West Antarctic Ice Sheet since the Last GlacialMaximum
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 100, s. 56-86
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Marine and terrestrial geological and marine geophysical data that constrain deglaciation since the LastGlacial Maximum (LGM) of the sector of theWest Antarctic Ice Sheet (WAIS) draining into the AmundsenSea and Bellingshausen Sea have been collated and used as the basis for a set of time-slice reconstructions.The drainage basins in these sectors constitute a little more than one-quarter of the area ofthe WAIS, but account for about one-third of its surface accumulation. Their mass balance is becomingincreasingly negative, and therefore they account for an even larger fraction of currentWAIS discharge. Ifall of the ice in these sectors of the WAIS were discharged to the ocean, global sea level would rise byca 2 m.There is compelling evidence that grounding lines of palaeo-ice streams were at, or close to, thecontinental shelf edge along the Amundsen Sea and Bellingshausen Sea margins during the last glacialperiod. However, the few cosmogenic surface exposure ages and ice core data available from the interiorofWest Antarctica indicate that ice surface elevations there have changed little since the LGM. In the fewareas from which cosmogenic surface exposure ages have been determined near the margin of the icesheet, they generally suggest that there has been a gradual decrease in ice surface elevation since pre-Holocene times. Radiocarbon dates from glacimarine and the earliest seasonally open marine sedimentsin continental shelf cores that have been interpreted as providing approximate ages for post-LGMgrounding-line retreat indicate different trajectories of palaeo-ice stream recession in the Amundsen Seaand Bellingshausen Sea embayments. The areas were probably subject to similar oceanic, atmosphericand eustatic forcing, in which case the differences are probably largely a consequence of how topographicand geological factors have affected ice flow, and of topographic influences on snow accumulation andwarm water inflow across the continental shelf.Pauses in ice retreat are recorded where there are “bottle necks” in cross-shelf troughs in both embayments.The highest retreat rates presently constrained by radiocarbon dates from sediment cores arefound where the grounding line retreated across deep basins on the inner shelf in the Amundsen Sea,which is consistent with the marine ice sheet instability hypothesis. Deglacial ages from the Amundsen Sea Embayment (ASE) and Eltanin Bay (southern Bellingshausen Sea) indicate that the ice sheet hadalready retreated close to its modern limits by early Holocene time, which suggests that the rapid icethinning, flow acceleration, and grounding line retreat observed in this sector over recent decades areunusual in the context of the past 10,000 years.
  •  
3.
  • Barlow, Natasha L. M., et al. (författare)
  • Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:9, s. 627-634
  • Forskningsöversikt (refereegranskat)abstract
    • During the Last Interglacial, global mean sea level reached approximately 6 to 9 m above the present level. This period of high sea level may have been punctuated by a fall of more than 4 m, but a cause for such a widespread sea-level fall has been elusive. Reconstructions of global mean sea level account for solid Earth processes and so the rapid growth and decay of ice sheets is the most obvious explanation for the sea-level fluctuation. Here, we synthesize published geomorphological and stratigraphic indicators from the Last Interglacial, and find no evidence for ice-sheet regrowth within the warm interglacial climate. We also identify uncertainties in the interpretation of local relative sea-level data that underpin the reconstructions of global mean sea level. Given this uncertainty, and taking into account our inability to identify any plausible processes that would cause global sea level to fall by 4 m during warm climate conditions, we question the occurrence of a rapid sea-level fluctuation within the Last Interglacial. We therefore recommend caution in interpreting the high rates of global mean sea-level rise in excess of 3 to 7 m per 1,000 years that have been proposed for the period following the Last Interglacial sea-level lowstand.
  •  
4.
  • Hodgson, Dominic A., et al. (författare)
  • Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 100, s. 137-158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the maritime and sub Antarctic contribution to the Scientific Committee for Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) community Antarctic Ice Sheet reconstruction. The overarching aim for all sectors of Antarctica was to reconstruct the Last Glacial Maximum (LGM) ice sheet extent and thickness, and map the subsequent deglaciation in a series of 5000 year time slices. However, our review of the literature found surprisingly few high quality chronological constraints on changing glacier extents on these timescales in the maritime and sub Antarctic sector. Therefore, in this paper we focus on an assessment of the terrestrial and offshore evidence for the LGM ice extent, establishing minimum ages for the onset of deglaciation, and separating evidence of deglaciation from LGM limits from those associated with later Holocene glacier fluctuations. Evidence included geomorphological descriptions of glacial landscapes, radiocarbon dated basal peat and lake sediment deposits, cosmogenic isotope ages of glacial features and molecular biological data. We propose a classification of the glacial history of the maritime and sub Antarctic islands based on this assembled evidence. These include: (Type I) islands which accumulated little or no LGM ice; (Type II) islands with a limited LGM ice extent but evidence of extensive earlier continental shelf glaciations; (Type III) seamounts and volcanoes unlikely to have accumulated significant LGM ice cover; (Type IV) islands on shallow shelves with both terrestrial and submarine evidence of LGM (and/or earlier) ice expansion; (Type V) Islands north of the Antarctic Polar Front with terrestrial evidence of LGM ice expansion; and (Type VI) islands with no data. Finally, we review the climatological and geomorphological settings that separate the glaciological history of the islands within this classification scheme. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.
  •  
5.
  • Jennings, Anne E., et al. (författare)
  • Baffin Bay paleoenvironments in the LGM and HS1 : Resolving the ice-shelf question
  • 2018
  • Ingår i: Marine Geology. - : Elsevier BV. - 0025-3227 .- 1872-6151. ; 402, s. 5-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Core HU2008029-12PC from the Disko trough mouth fan on the central West Greenland continental slope is used to test whether an ice shelf covered Baffin Bay during the Last Glacial Maximum (LGM) and at the onset of the deglaciation. We use benthic and planktic foraminiferal assemblages, stable isotope analysis of planktic forams, algal biomarkers, ice-rafted detritus (IRD), lithofacies characteristics defined from CT scans, and quantitative mineralogy to reconstruct paleoceanographic conditions, sediment processes and sediment provenance. The chronology is based on radiocarbon dates on planktic foraminifers using a Delta R of 140 +/- 30 C-14 years, supplemented by the varying reservoir estimates of Stern and Lisiecki (2013) that provide an envelope of potential ages. HU2008029-12PC is bioturbated throughout. Sediments between the core base at 11.3 m and 4.6 m (LGM through HS1) comprise thin turbidites, plumites and hemipelagic sediments with Greenlandic provenance consistent with processes active at the Greenland Ice Sheet margin grounded at or near the shelf edge. Abundance spikes of planktic forams coincide with elevated abundance of benthic forams in assemblages indicative of chilled Atlantic Water, meltwater and intermittent marine productivity. IRD and IP25 are rare in this interval, but brassicasterol, an indicator of marine productivity reaches and sustains low levels during the LGM. These biological characteristics are consistent with a sea-ice covered ocean experiencing periods of more open water such as leads or polynyas in the sea ice cover, with chilled Atlantic Water at depth, rather than full iceshelf cover. They do not support the existence of a full Baffin Bay ice shelf cover extending from grounded ice on the Davis Strait. Initial ice retreat from the West Greenland margin is manifested by a pronounced lithofacies shift to bioturbated, diatomaceous mud with rare IRD of Greenlandic origin at 467 cm (16.2 cal ka BP; Delta R = 140 yrs) within HS1. A spike in foraminiferal abundance and ocean warmth indicator benthic forams precedes the initial ice retreat from the shelf edge. At the end of HS1, IP 25 , brassicasterol and benthic forams indicative of sea-ice edge productivity increase, indicating warming interstadial conditions. Within the Bolling/Allerod interstadial a strong rise in IP 25 content and IRD spikes rich in detrital carbonate from northern Baffin Bay indicate that northern Baffin Bay ice streams were retreating and provides evidence for increased open water, advection of Atlantic Water in the West Greenland Current, and formation of an IRD belt along the W. Greenland margin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy