SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ögren Sven Ove) "

Sökning: WFRF:(Ögren Sven Ove)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adem, Abdu, et al. (författare)
  • Atypical but not typical antipsychotic drugs ameliorate phencyclidine-induced emotional memory impairments in mice
  • 2019
  • Ingår i: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X .- 1873-7862. ; 29:5, s. 616-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is associated with cognitive impairments related to hypofunction in glutamatergic N-methyl-D-aspartate receptor (NMDAR) transmission. Phencyclidine (PCP), a non-competitive NMDAR antagonist, models schizophrenia-like behavioral symptoms including cognitive deficits in rodents. This study examined the effects of PCP on emotional memory function examined in the passive avoidance (PA) task in mice and the ability of typical and atypical antipsychotic drugs (APDs) to rectify the PCP-mediated impairment. Pre-training administration of PCP (0.5, 1, 2 or 3 mg/kg) dose-dependently interfered with memory consolidation in the PA task. In contrast, PCP was ineffective when administered after training, and immediately before the retention test indicating that NMDAR blockade interferes with memory encoding mechanisms. The typical APD haloperidol and the dopamine D2/3 receptor antagonist raclopride failed to block the PCP-induced PA impairment suggesting a negligible role of D2 receptors in the PCP impairment. In contrast, the memory impairment was blocked by the atypical APDs clozapine and olanzapine in a dose-dependent manner while risperidone was effective only at the highest dose tested (1 mg/kg). The PCP-induced impairment involves 5-HT1A receptor mechanisms since the antagonist NAD-299 blocked the memory impairment caused by PCP and the ability of clozapine to attenuate the impairment by PCP. These results indicate that atypical but not typical APDs can ameliorate NMDAR-mediated memory impairments and support the view that atypical APDs such as clozapine can modulate glutamatergic memory dysfunctions through 5-HT1A receptor mechanisms. These findings suggest that atypical APDs may improve cognitive impairments related to glutamatergic dysfunction relevant for emotional memories in schizophrenia.
  •  
2.
  • Bendel, Olof, et al. (författare)
  • Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory
  • 2005
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 25:12, s. 1586-1595
  • Tidskriftsartikel (refereegranskat)abstract
    • The pyramidal neurons of the hippocampal CA1 region are essential for cognitive functions such as spatial learning and memory, and are selectively destroyed after cerebral ischemia. To analyze whether degenerated CA1 neurons are replaced by new neurons and whether such regeneration is associated with amelioration in learning and memory deficits, we have used a rat global ischemia model that provides an almost complete disappearance (to approximately 3% of control) of CA1 neurons associated with a robust impairment in spatial learning and memory at two weeks after ischemia. We found that transient cerebral ischemia can evoke a massive formation of new neurons in the CA1 region, reaching approximately 40% of the original number of neurons at 90 days after ischemia (DAI). Co-localization of the mature neuronal marker neuronal nuclei with 5-bromo-2'-deoxyuridine in CA1 confirmed that neurogenesis indeed had occurred after the ischemic insult. Furthermore, we found increased numbers of cells expressing the immature neuron marker polysialic acid neuronal cell adhesion molecule in the adjacent lateral periventricular region, suggesting that the newly formed neurons derive from this region. The reappearance of CA1 neurons was associated with a recovery of ischemia-induced impairments in spatial learning and memory at 90 DAI, suggesting that the newly formed CA1 neurons restore hippocampal CA1 function. In conclusion, these results show that the brain has an endogenous capacity to form new nerve cells after injury, which correlates with a restoration of cognitive functions of the brain.
  •  
3.
  • Kuteeva, Eugenia, et al. (författare)
  • Differential Role of Galanin Receptors in the Regulation of Depression-Like Behavior and Monoamine/Stress-Related Genes at the Cell Body Level
  • 2008
  • Ingår i: Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 0893-133X .- 1740-634X. ; 33:11, s. 2573-2585
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study on rat examined the role of galanin receptor subtypes in regulation of depression-like behavior as well as potential molecular mechanisms involved in the locus coeruleus (LC) and dorsal raphe (DR). The effect of intracerebroventricular (i.c.v.) infusion of galanin or galanin receptor GalR1- and GalR2-selective ligands was studied in the forced swim test, followed by quantitative in situ hybridization studies. Naive control, non-treated (swim control), saline-and fluoxetine-treated rats were used as controls in the behavioral and in situ hybridization studies. Subchronic treatment with fluoxetine reduced immobility and climbing time. Intracerebroventricular infusion of galanin, the GalR1 agonist M617 or the GalR2 antagonist M871 increased, while the GalR2(R3) agonist AR-M1896 decreased, immobility time compared to the aCSF-treated animals. Galanin also decreased the time of climbing. Galanin mRNA levels were upregulated by the combination of injection + swim stress in the saline-and the fluoxetine-treated groups in the LC, but not in the DR. Also tyrosine hydroxylase levels in the LC were increased following injection + swim stress in the saline-and fluoxetine-treated rats. Tryptophan hydroxylase 2 and serotonin transporter mRNAs were not significantly affected by any treatment. 5-HT(1A) mRNA levels were downregulated following i.c.v. galanin, M617 or AR-M1896 infusion. These results indicate a differential role of galanin receptor subtypes in depression-like behavior in rodents: GalR1 subtype may mediate 'prodepressive' and GalR2 'antidepressant' effects of galanin. Galanin has a role in behavioral adaptation to stressful events involving changes of molecules important for noradrenaline and/or serotonin transmission.
  •  
4.
  • Kuteeva, Eugenia, et al. (författare)
  • Distribution of galanin and galanin transcript in the brain of a galanin-overexpressing transgenic mouse
  • 2004
  • Ingår i: Journal of Chemical Neuroanatomy. - : Elsevier BV. - 0891-0618 .- 1873-6300. ; 28:4, s. 185-216
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of galanin mRNA-expressing cells and galanin-immunoreactive (IR) cell bodies and processes was studied in the brain of mice overexpressing galanin under the PDGF-B promoter (GalOE mice) and of wild type (WT) mice, both in colchicine-treated and non-treated animals. In this abstract, we only describe the results in GalOE mouse. A widespread ectopic expression of galanin (both mRNA and peptide) was found, that is a situation when neither transcript nor peptide could be seen in WT mice, not even after colchicine treatment. However, in some regions, such as claustrum, basolateral amygdala, thalamus, CA1 pyramidal cells, and Purkinje cells only galanin mRNA could be detected. In the forebrain galanin was seen in the mitral cells of the olfactory bulb, throughout the cortex, in the basolateral amygdaloid nucleus, claustrum, granular and pyramidal cell layers of the hippocampus, subiculum and presubiculum. In the thalamus, the anterodorsal, mediodorsal, intermediodorsal and mediodorsal lateral nuclei, the reuniens and reticular nuclei showed ectopic expression of galanin. Within the hypothalamus, neurons of the suprachiasmatic nucleus contained galanin. In the mesencephalon, the geniculate nucleus, nucleus ruber, the mesencephalic trigeminal and reticulotegmental nuclei ectopically expressed galanin. In the cerebellum, galanin was observed in the Purkinje cells and in the lateral and interposed cerebellar nuclei. In the pons, sensory and motor nuclei of the trigeminal nerve, the laterodorsal and dorsal tegmental nuclei, the pontine, reticulotegmental and gigantocellular reticular nuclei expressed galanin. Within the medulla oblongata, labeled cells were detected in the facial, ambiguus, prepositus, lateral paragigantocellular and lateral reticular nuclei, and spinal trigeminal nucleus. High densities of galanin-IR fibers were found in the axonal terminals of the lateral olfactory tract, the hippocampal and presumably the cerebellar mossy fibers system, in several thalamic and hypothalamic regions and the lower brain stem. Possible functional consequences of galanin overexpression are discussed.
  •  
5.
  • Lundberg, Mathias, et al. (författare)
  • Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy
  • 2020
  • Ingår i: Bioscience Reports. - : Portland Press Ltd.. - 0144-8463 .- 1573-4935. ; 40:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG). However, phenotypic determination by immunohistochemistry analysis could not reveal whether BrdU-positive cells were indeed NSCs. Using a previously established cell model for analysing NSC protection in vitro, we investigated a protective effect of clozapine on NSCs.Primary NSCs were isolated from the mouse subventricular zone (SVZ), we show that clozapine had a NSC protective activity alone, as evident by employing an ATP cell viability assay. In contrast, haloperidol did not show any NSC protective properties. Subsequently, cells were exposed to the non-competitive NMDA-receptor antagonist ketamine. Clozapine, but not haloperidol, had a NSC protective/anti-apoptotic activity against ketamine-induced cytotoxicity. The observed NSC protective activity of clozapine was associated with increased expression of the anti-apoptotic marker Bcl-2, decreased expression of the pro-apoptotic cleaved form of caspase-3 and associated with decreased expression of the autophagosome marker 1A/1B-light chain 3 (LC3-II).Collectively, our findings suggest that clozapine may have a protective/anti-apoptotic effect on NSCs, supporting previous in vivo observations, indicating a neurogenesis-promoting activity for clozapine. If the data are further confirmed in vivo, the results may encourage an expanded use of clozapine to restore impaired neurogenesis in schizophrenia.
  •  
6.
  • Stiedl, Oliver, et al. (författare)
  • The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory.
  • 2015
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy