SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aalbers Jelle) "

Search: WFRF:(Aalbers Jelle)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Aalbers, Jelle, et al. (author)
  • Finding dark matter faster with explicit profile likelihoods
  • 2020
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 102:7
  • Journal article (peer-reviewed)abstract
    • Liquid xenon time-projection chambers are the world's most sensitive detectors for a wide range of dark matter candidates. We show that the statistical analysis of their data can be improved by replacing detector response Monte Carlo simulations with an equivalent deterministic calculation. This allows the use of high-dimensional undiscretized models, yielding up to similar to 2 times better discrimination of the dominant backgrounds. In turn, this could significantly extend the physics reach of upcoming experiments such as XENONnT and LZ, and bring forward a potential 5 sigma dark matter discovery by over a year.
  •  
3.
  • Aalbers, Jelle, et al. (author)
  • Solar neutrino detection sensitivity in DARWIN via electron scattering
  • 2020
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:12
  • Journal article (peer-reviewed)abstract
    • We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin2 theta w, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1-2.5 sigma significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe.
  •  
4.
  • Aalbers, Jelle, et al. (author)
  • The triggerless data acquisition system of the XENONnT experiment
  • 2023
  • In: Journal of Instrumentation. - 1748-0221. ; 18:7
  • Journal article (peer-reviewed)abstract
    • The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration. Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run.
  •  
5.
  • Algeri, Sara, et al. (author)
  • Searching for new phenomena with profile likelihood ratio tests
  • 2020
  • In: Nature reviews physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 2:5, s. 245-252
  • Journal article (peer-reviewed)abstract
    • Likelihood ratio tests are standard statistical tools used in particle physics to perform tests of hypotheses. The null distribution of the likelihood ratio test statistic is often assumed to be chi (2), following Wilks' theorem. However, in many circumstances relevant to modern experiments this theorem is not applicable. In this Expert Recommendation, we overview practical ways to identify these situations and provide guidelines on how to construct valid inference. We use examples from particle physics, but the statistical constructs discussed here can be used in any scientific discipline that relies on data analysis. This Expert Recommendation provides a guide to identifying practical situations where the likelihood ratio test statistic cannot be approximated by a chi (2) distribution and proposes adequate solutions.
  •  
6.
  • Aprile, Elena, et al. (author)
  • Analysis of the XENON1T data for WIMP search : Background Models and Statistical Inference
  • Other publication (other academic/artistic)abstract
    • The XENON1T experiment searches for dark matter recoils within a $2$ tonne liquid xenon target. The detector is operated as a dual-phase time projection chamber, and reconstructs the energy and position of interactions in the active volume. In the central volume of the target mass, the lowest background rate of a xenon-based direct detection experiment so far has been achieved. In this work we describe the detector response modelling, the background and signal models, and the statistical inference procedures used in a search for Weakly Interacting Massive Particles (WIMPs) using 1\,tonne$\times$year exposure of XENON1T data.
  •  
7.
  • Aprile, E., et al. (author)
  • Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T
  • 2019
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:14
  • Journal article (peer-reviewed)abstract
    • We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 x 10(-42) cm(2) at 30 GeV/c(2) and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
  •  
8.
  • Aprile, E., et al. (author)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Journal article (peer-reviewed)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
9.
  • Aprile, E., et al. (author)
  • Excess electronic recoil events in XENON1T
  • 2020
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:7
  • Journal article (peer-reviewed)abstract
    • We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76 +/- 2(stat) events/(tonne x year x keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4 sigma significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by g(ae) < 3.8 x 10(-12), g(ae)g(an)(eff) < 4.8 x 10(-18), and g(ae)g(a gamma) < 7.7 x 10(-22) GeV-1, and excludes either g(ae) = 0 or g(ae)g(a gamma) = g(ae)ge(an)(eff), = 0. The neutrino magnetic moment signal is similarly favored over background at 3.2 sigma, and a confidence interval of mu(nu) is an element of (1.4, 2.9) x 10(-11) mu(B) (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by beta decays of tritium at 3.2 sigma significance with a corresponding tritium concentration in xenon of (6.2 +/- 2.0) x 10(-25) mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses arc decreased to 2.0 sigma and 0.9 sigma, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3 +/- 0.2) keV (68% C.L.) with a 3.0 sigma global (4.0 sigma local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c(2). We also consider the possibility that Ar-37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar-37 concentration can be tightly constrained and is found to be negligible.
  •  
10.
  • Aprile, E., et al. (author)
  • First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment
  • 2019
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:7
  • Journal article (peer-reviewed)abstract
    • We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view