SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aarestrup Frank M.) "

Sökning: WFRF:(Aarestrup Frank M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edwards, Robert A., et al. (författare)
  • Global phylogeography and ancient evolution of the widespread human gut virus crAssphage
  • 2019
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 4:10, s. 1727-1736
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.
  •  
2.
  • Hjelmsø, Mathis Hjort, et al. (författare)
  • Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing.
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological studies, and evaluation of waste water treatment efficiency. In raw sewage human waste is mixed with household, industrial and drainage water, and virus particles are, therefore, only found in low concentrations. This necessitates a step of sample concentration to allow for sensitive virus detection. Additionally, viruses harbor a large diversity of both surface and genome structures, which makes universal viral genomic extraction difficult. Current studies have tackled these challenges in many different ways employing a wide range of viral concentration and extraction procedures. However, there is limited knowledge of the efficacy and inherent biases associated with these methods in respect to viral sewage metagenomics, hampering the development of this field. By the use of next generation sequencing this study aimed to evaluate the efficiency of four commonly applied viral concentrations techniques (precipitation with polyethylene glycol, organic flocculation with skim milk, monolithic adsorption filtration and glass wool filtration) and extraction methods (Nucleospin RNA XS, QIAamp Viral RNA Mini Kit, NucliSENS® miniMAG®, or PowerViral® Environmental RNA/DNA Isolation Kit) to determine the viriome in a sewage sample. We found a significant influence of concentration and extraction protocols on the detected viriome. The viral richness was largest in samples extracted with QIAamp Viral RNA Mini Kit or PowerViral® Environmental RNA/DNA Isolation Kit. Highest viral specificity were found in samples concentrated by precipitation with polyethylene glycol or extracted with Nucleospin RNA XS. Detection of viral pathogens depended on the method used. These results contribute to the understanding of method associated biases, within the field of viral sewage metagenomics, making evaluation of the current literature easier and helping with the design of future studies.
  •  
3.
  • Leekitcharoenphon, Pimlapas, et al. (författare)
  • Cross-Border Transmission of Salmonella Choleraesuis var. Kunzendorf in European Pigs and Wild Boar : Infection, Genetics, and Evolution
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Salmonella enterica subspecies enterica serotype Choleraesuis is a swine adapted serovar. S. Choleraesuis variant Kunzendorf are responsible for the majority of outbreaks among pigs. S. Choleraesuis is rare in Europe, although there have been serious outbreaks in pigs including two outbreaks in Denmark in 1999-2000 and 2012-2013. Here, we elucidate the epidemiology, possible transmission routes and sources, and clonality of European S. Choleraesuis isolates including the Danish outbreak isolates. A total of 102 S. Choleraesuis isolates from different European countries and the United States of America, covering available isolates from the last two decades were selected for whole genome sequencing. We applied a temporally structured sequence analysis within a Bayesian framework to reconstruct a temporal and spatial phylogenetic tree. MLST type, resistance genes, plasmid replicons and accessory genes were identified using bioinformatics tools. Fifty-eight isolates including 11 out of 12 strains from wild boars were pan-susceptible. The remaining isolates carried multiple resistance genes. Eleven different plasmid replicons in eight plasmids were determined among the isolates. Accessory genes were associated to the identified resistance genes and plasmids. The European S. Choleraesuis was estimated to have emerged in 1837 (95% credible interval, 1733 - 1983) with the mutation rate of 1.02 SNPs/genome/year. The isolates were clustered according to countries and neighbour countries. There were transmission events between strains from the USA and European countries. Wild boar and pig isolates were genetically linked suggesting cross-border transmission and transmission due to a wildlife reservoir. The phylogenetic tree shows that multiple introductions were responsible for the outbreak of 2012-2013 in Denmark, and suggests that poorly disinfected vehicles crossing the border into Denmark were potentially the source of the outbreak. Low levels of single nucleotide polymorphisms (SNP) differences (0-4 SNPs) can be observed between clonal strains isolated from different organs of the same animal. Proper disinfection of livestock vehicles and improved quality control of livestock feed are recommended to prevent future spread of S. Choleraesuis or other more serious infectious diseases such as African swine fever (ASF) into the European pig production system.
  •  
4.
  • Pedersen, Karl, et al. (författare)
  • Reappearance of Salmonella serovar Choleraesuis var. Kunzendorf in Danish pig herds
  • 2015
  • Ingår i: Veterinary Microbiology. - : Elsevier. - 0378-1135 .- 1873-2542. ; 176:3-4, s. 282-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Salmonella enterica serovar Choleraesuis is a porcine adapted serovar which may cause serious outbreaks in pigs. Here we describe outbreaks of salmonellosis due to S. Choleraesuis in four Danish pig farms in 2012-2013 by clinic, serology, and microbiology and compare the isolates to those of a previous outbreak in 1999-2000. The infection was in some herds associated with high mortality and a moderate to high sero-prevalence was found. In 2012-2013 the disease contributed to increased mortality but occurred concomitant with other disease problems in the herds, which likely delayed the diagnosis by up to several months. Nine isolates from the four farms in 2012-2013 and 14 isolates obtained from the outbreak in Denmark in 1999-2000 were subjected to typing using pulsed-field gel electrophoresis (PFGE). Seven isolates were selected for whole genome sequencing (WGS). The PFGE results of 23 isolates displayed five different profiles. The isolates from 2012 to 2013 revealed two distinct profiles, both different from the isolates recovered in 1999-2000. Two of the 2012-2013 farms shared PFGE profiles and had also transported pigs between them. The profile found in the two other 2012-2013 farms was indistinguishable but no epidemiological connection between these farms was found. Analysis of the number of single nucleotide polymorphisms (SNPs) from the WGS data indicated that the isolates from the farms in 2012-2013 were more closely related to each other than to isolates from the outbreak in 1999. It was therefore concluded that the infection was a new introduction and not a persistent infection since the outbreak in 1999. It may further be suggested that there were two or three independent rather than a single introduction. The re-introduction of S. Choleraesuis in Denmark emphasizes the importance of strict hygiene measures in the herds. Further investigations using WGS are now in progress on a larger collection of isolates to study clonality at European level and trace the origin of the infections.
  •  
5.
  • Sandrini, Michael P. B., et al. (författare)
  • Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner
  • 2007
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 1460-2091 .- 0305-7453. ; 60:3, s. 510-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To investigate the bactericidal activity of antiviral and anticancer nucleoside analogues against a variety of pathogenic bacteria and characterize the activating enzymes, deoxyribonucleoside kinases (dNKs). Methods: Several FDA-approved nucleoside analogue drugs were screened for their potential bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes. These genes were tested for their ability to increase the susceptibility of a dNK-deficient E. coli strain to various analogues. We overexpressed, purified and characterized the substrate specificity and kinetic properties of the recombinant enzymes from S. enterica and B. cereus. Results: The tested Gram-negative bacteria were susceptible to 3 '-azido-3 '-deoxythymidine (AZT) in the concentration range 0.032-31.6 mu M except for a single E. coli isolate and two Pseudomonas aeruginosa isolates which were resistant to the tested AZT concentrations. Purified recombinant S. enterica thymidine kinase phosphorylated AZT efficiently with a K-m of 73.3 mM and k(cat)/K-m of 6.6 x 10(4) s(-1)M(-1) and is the activator of this drug in vivo. 2 ',2 '-Difluoro-2 '-deoxycytidine ( gemcitabine) was a potent antibiotic against Gram-positive bacteria in the concentration range between 0.001 and 1.0 mu M. The B. cereus deoxyadenosine kinase had a Km for gemcitabine of 33.5 mM and kcat/Km of 5.1 x 10(3) s(-1) M-1 and activates gemcitabine in vivo. S. enterica and B. cereus are now amongst the first bacteria with a completely characterized set of dNK enzymes. Conclusions: Bacterial dNKs efficiently activate nucleoside analogues in a species-specific manner. Therefore, nucleoside analogues have a potential to be employed as antibiotics in the fight against emerging multiresistant bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy