SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aarestrup J) "

Sökning: WFRF:(Aarestrup J)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munk, P., et al. (författare)
  • Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
  •  
2.
  • Edwards, Robert A., et al. (författare)
  • Global phylogeography and ancient evolution of the widespread human gut virus crAssphage
  • 2019
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 4:10, s. 1727-1736
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.
  •  
3.
  • Harcourt, R., et al. (författare)
  • Animal-borne telemetry: An integral component of the ocean observing toolkit
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management. © 2019 Harcourt, Sequeira, Zhang, Roquet, Komatsu, Heupel, McMahon, Whoriskey, Meekan, Carroll, Brodie, Simpfendorfer, Hindell, Jonsen, Costa, Block, Muelbert, Woodward, Weise, Aarestrup, Biuw, Boehme, Bograd, Cazau, Charrassin, Cooke, Cowley, de Bruyn, Jeanniard du Dot, Duarte, Eguíluz, Ferreira, Fernández-Gracia, Goetz, Goto, Guinet, Hammill, Hays, Hazen, Hückstädt, Huveneers, Iverson, Jaaman, Kittiwattanawong, Kovacs, Lydersen, Moltmann, Naruoka, Phillips, Picard, Queiroz, Reverdin, Sato, Sims, Thorstad, Thums, Treasure, Trites, Williams, Yonehara and Fedak.
  •  
4.
  • Aarestrup, FM, et al. (författare)
  • Towards a European health research and innovation cloud (HRIC)
  • 2020
  • Ingår i: Genome medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 12:1, s. 18-
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe.
  •  
5.
  •  
6.
  • Lennox, Robert J., et al. (författare)
  • Positioning aquatic animals with acoustic transmitters
  • 2023
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 14:10, s. 2514-2530
  • Forskningsöversikt (refereegranskat)abstract
    • Geolocating aquatic animals with acoustic tags has been ongoing for decades, relying on the detection of acoustic signals at multiple receivers with known positions to calculate a 2D or 3D position, and ultimately recreate the path of an aquatic animal from detections at fixed stations.This method of underwater geolocation is evolving with new software and hardware options available to help investigators design studies and calculate positions using solvers based predominantly on time-difference-of-arrival and time-of-arrival.We provide an overview of the considerations necessary to implement positioning in aquatic acoustic telemetry studies, including how to design arrays of receivers, test performance, synchronize receiver clocks and calculate positions from the detection data. We additionally present some common positioning algorithms, including both the free open-source solvers and the ‘black-box’ methods provided by some manufacturers for calculating positions.This paper is the first to provide a comprehensive overview of methods and considerations for designing and implementing better positioning studies that will support users, and encourage further knowledge advances in aquatic systems.
  •  
7.
  • Aarestrup, K., et al. (författare)
  • Survival and progression rates of anadromous brown trout kelts Salmo trutta during downstream migration in freshwater and at sea
  • 2015
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 535, s. 185-195
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine migration of post-spawning anadromous fish remains poorly understood. The present study examined survival and progression rates of anadromous brown trout Salmo trutta L. after spawning (kelts) during downriver, fjord, and sea migration. Kelts (n = 49) were captured in the Danish River Gudenaa, tagged with acoustic transmitters and subsequently recorded by automatic receivers. Kelts spent on average 25 d moving down the 45 km river and through the brackish fjord. The fish entered the Kattegat Sea between 14 April and 30 May. Eighteen of the 49 kelts disappeared in the river and fjord during outward migration, likely due to mortality. Survival was not significantly related to gill Na+/K+-ATPase activity, suggesting that physiological adaptation to saltwater may be less critical for adults compared to juveniles (smolts). Of the 31 fish that entered the Kattegat Sea, 45% survived and returned to the fjord. The duration of the entire marine migration, from leaving to entering the river, was on average 163 d. The fish returned from the Kattegat Sea to the fjord between 22 July and 21 October. Upon return, the fish spent 1-90 d passing through Randers Fjord, with most individuals completing the reach within 4 d, suggesting that the kelts spent limited time foraging after returning to the fjord. The total survival during the entire marine migration, including the fjord, was a minimum of 29%. Our study provides data that are important for management of anadromous brown trout, and the high survival highlights that kelts may represent a valuable resource for both population reproduction and recreational fisheries.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy