SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aastrup Christian) "

Sökning: WFRF:(Aastrup Christian)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aastrup, Christian, et al. (författare)
  • Jackdaw nestlings rapidly increase innate immune function during the nestling phase but no evidence for a trade-off with growth
  • 2021
  • Ingår i: Developmental and Comparative Immunology. - : Elsevier BV. - 0145-305X. ; 117
  • Tidskriftsartikel (refereegranskat)abstract
    • Although animals are born with a protective immune system, even the innate immune system is under development from birth to adulthood and this development may be affected by sex and growth. However, most knowledge comes from captive animals or long-lived slow growing species. Moreover, little is known about how innate immune function, the important first line of defence, develops during early life in fast-growing animals such as free-living passerines. We studied development of innate baseline immune function in nestlings of free-living jackdaws Corvus monedula. We measured four immune parameters (hemolysis, hemagglutination, bacterial-killing capacity, haptoglobin concentration) and structural body size (body mass, wing length, tarsus length) at day 12 and day 29 post-hatching. We found that three out of four immune parameters (hemolysis, hemagglutination, bacterial-killing capacity) substantially increased with nestling age and had roughly reached adult levels shortly prior to fledging. We found little differences in immune development between males and females despite them differing in structural development. We also found no evidence that the nestlings traded off immune development with growth. That nestlings rapidly increase innate baseline immune function during early life and similarly in males and females indicates the importance of a well-functioning immune system already during the nestling phase.
  •  
2.
  • Aastrup, Christian, et al. (författare)
  • Size and immune function as predictors of predation risk in nestling and newly fledged jackdaws
  • 2023
  • Ingår i: Animal Behaviour. - : Elsevier BV. - 0003-3472. ; 198, s. 73-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Prey choice by predators may be based on the potential prey's condition, for example resulting in substandard individuals running a higher risk of being predated. Over 5 years, we studied young jackdaws, Corvus monedula, to determine whether size and innate baseline immune function may predict predation risk by goshawks, Accipiter gentilis, during the nestling and early fledging phases. We measured body mass, wing length, tarsus length and four innate immune indices two to four times when nestlings were 12–29 days old. To determine which individuals had been predated during the nestling phase and shortly after fledging, we searched for metal rings of the jackdaws in the only goshawk territory close to the jackdaw colony. Nestling mortality before 12 days of age was entirely due to starvation, whereas between 12 days of age and fledging, mortality was mainly due to predation. Nestlings with smaller size (mass, wing, tarsus) and low lysis titre and haptoglobin concentrations were at a higher risk of being predated before fledging. Directly after fledging, individuals with short wings were preferentially predated, with no effects of body mass, tarsus length or any of the four immune indices measured at day 29 (i.e. shortly before fledging). That lower immune function and smaller size predict predation risk in nestlings may reflect that these individuals are of poor quality and/or lag behind in development. We hypothesize that hunger makes these nestlings sit closest to the entrance hole and hence become the first to be predated. For fledglings, our results suggest that poor flight ability makes individuals with short wings the easiest targets for avian predators.
  •  
3.
  • Pečnerová, Patrícia, et al. (författare)
  • Population genomics of the muskox' resilience in the near absence of genetic variation
  • 2024
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 33:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy