SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abadias G) "

Sökning: WFRF:(Abadias G)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chason, E., et al. (författare)
  • A kinetic model for stress generation in thin films grown from energetic vapor fluxes
  • 2016
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 119:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced subsurface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films. Published by AIP Publishing.
  •  
2.
  • Jamnig, Andreas, 1991-, et al. (författare)
  • Atomic-scale diffusion rates during growth of thin metal films on weakly-interacting substrates
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a combined experimental and theoretical approach to study the rates of surface diffusion processes that govern early stages of thin Ag and Cu film morphological evolution on weakly-interacting amorphous carbon substrates. Films are deposited by magnetron sputtering, at temperatures T-S between 298 and 413 K, and vapor arrival rates F in the range 0.08 to 5.38 monolayers/s. By employing in situ and real-time sheet-resistance and wafer-curvature measurements, we determine the nominal film thickness Theta at percolation (Theta(perc)) and continuous film formation (Theta(cont)) transition. Subsequently, we use the scaling behavior of Theta(perc) and Theta(cont) as a function of F and T-s, to estimate, experimentally, the temperature-dependent diffusivity on the substrate surface, from which we calculate Ag and Cu surface migration energy barriers E-D(exp) and attempt frequencies nu(exp)(0). By critically comparing E-D(exp) and nu(exp)(0) with literature data, as well as with results from our ab initio molecular dynamics simulations for single Ag and Cu adatom diffusion on graphite surfaces, we suggest that: (i) E-D(exp) and nu(exp)(0) correspond to diffusion of multiatomic clusters, rather than to diffusion of monomers; and (ii) the mean size of mobile clusters during Ag growth is larger compared to that of Cu. The overall results of this work pave the way for studying growth dynamics in a wide range of technologically-relevant weakly-interacting film/substrate systems-including metals on 2D materials and oxides-which are building blocks in next-generation nanoelectronic, optoelectronic, and catalytic devices.
  •  
3.
  • Jamnig, Andreas, et al. (författare)
  • The effect of kinetics on intrinsic stress generation and evolution in sputter-deposited films at conditions of high atomic mobility
  • 2020
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 127:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Vapor-based metal film growth at conditions that promote high atomic mobility is typically accompanied by compressive stress formation after completion of island coalescence, while an apparent stress relaxation is observed upon deposition interruption. Despite numerous experimental studies confirming these trends, the way by which growth kinetics affect postcoalescence stress magnitude and evolution is not well understood, in particular, for sputter-deposited films. In this work, we study in situ and in real-time stress evolution during sputter-deposition of Ag and Cu films on amorphous carbon. In order to probe different conditions with respect to growth kinetics, we vary the deposition rate F from 0:015 to 1:27 nm/s, and the substrate temperature T-S from 298 to 413 K. We find a general trend toward smaller compressive stress magnitudes with increasing T-S for both film/substrate systems. The stress-dependence on F is more complex: (i) for Ag, smaller compressive stress is observed when increasing F; (ii) while for Cu, a nonmonotonic evolution with F is seen, with a compressive stress maximum for F = 0.102 nm/s. Studies of postdeposition stress evolution show the occurrence of a tensile rise that becomes less pronounced with increasing T-S and decreasing F, whereas a faster tensile rise is seen by increasing F and T-S. We critically discuss these results in view of ex situ obtained film morphology which show that deposition-parameter-induced changes in film grain size and surface roughness are intimately linked with the stress evolution. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  •  
4.
  • Magnfält, Daniel, et al. (författare)
  • Atom insertion into grain boundaries and stress generation in physically vapor deposited films
  • 2013
  • Ingår i: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 103:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present evidence for compressive stress generation via atom insertion into grain boundaries in polycrystalline Mo thin films deposited using energetic vapor fluxes (<∼120 eV). Intrinsic stress magnitudes between −3 and +0.2 GPa are obtained with a nearly constant stress-free lattice parameter marginally larger (0.12%) than that of bulk Mo. This, together with a correlation between large compressive film stresses and high film densities, implies that the compressive stress is not caused by defect creation in the grains but by grain boundary densification. Two mechanisms for diffusion of atoms into grain boundaries and grain boundary densification are suggested.
  •  
5.
  • Magnfält, Daniel, et al. (författare)
  • Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films
  • 2016
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 119:5, s. 055305-
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low. (C) 2016 AIP Publishing LLC.
  •  
6.
  • Magnfält, Daniel, et al. (författare)
  • Time-domain and energetic bombardment effects on the nucleation and coalescence of thin metal films on amorphous substrates
  • 2013
  • Ingår i: Journal of Physics D. - : Institute of Physics (IOP). - 0022-3727 .- 1361-6463. ; 46:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsed, ionized vapour fluxes, generated from high power impulse magnetron sputtering (HiPIMS) discharges, are employed to study the effects of time-domain and energetic bombardment on the nucleation and coalescence characteristics during Volmer–Weber growth of metal (Ag) films on amorphous (SiO2) substrates. In situ monitoring of the film growth, by means of wafer curvature measurements and spectroscopic ellipsometry, is used to determine the film thickness where a continuous film is formed. This thickness decreases from ~210 to ~140 Å when increasing the pulsing frequency for a constant amount of material deposited per pulse or when increasing the amount of material deposited per pulse and the energy of the film forming species for a constant pulsing frequency. Estimations of adatom lifetimes and the coalescence times show that there are conditions at which these times are within the range of the modulation of the vapour flux. Thus, nucleation and coalescence processes can be manipulated by changing the temporal profile of the vapour flux. We suggest that other than for elucidating the atomistic mechanisms that control pulsed growth processes, the interplay between the time scales for diffusion, coalescence and vapour flux pulsing can be used as a tool to determine characteristic surface diffusion and island coalescence parameters.
  •  
7.
  • Sarakinos, Kostas, 1980-, et al. (författare)
  • Unravelling the effect of nitrogen on the morphological evolution of thin silver films on weakly-interacting substrates
  • 2024
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of nitrogen on the morphological evolution of thin silver (Ag) films deposited on weakly-interacting amorphous carbon (a-C) and silicon oxide (SiOx) surfaces. Films are synthesized at a deposition rate of 0.1nm·s-1 by direct current magnetron sputtering (DCMS), high power impulse magnetron sputtering (HiPIMS), and electron-beam evaporation (EBE). We monitor growth in situ and in real time by measuring the evolution of film stress and optical properties, complemented by ex situ analyses of discontinuous-layer morphologies, film crystal structure, and film composition. We find that addition of molecular nitrogen (N2) to the plasmagenic gas (Ar) during DCMS and HiPIMS promotes a two-dimensional (2D) morphology. Concurrently, EBE-deposited films exhibit a significantly more pronounced three-dimensional morphological evolution, independently from the gas atmosphere composition. We argue that the 2D morphology in DCMS- and HiPIMS-grown films is enhanced due to incorporation of atomic nitrogen (N)—result of plasma-induced N2 dissociation—that hinders island reshaping during coalescence. This mechanism is not active during EBE due to the absence of energetic plasma electrons driving N2 dissociation. The overall results of the study show that accurate control of vapor-phase chemistry is of paramount importance when using gaseous species as agents for manipulating growth in weakly-interacting film-substrate systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy