SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abba S.I.) "

Sökning: WFRF:(Abba S.I.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abba, S. I., et al. (författare)
  • Effluents quality prediction by using nonlinear dynamic block-oriented models : A system identification approach
  • 2021
  • Ingår i: Desalination and Water Treatment. - : Desalination Publications. - 1944-3994 .- 1944-3986. ; 218, s. 52-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic and complex municipal wastewater treatment plant (MWWTP) process should be handled efficiently to safeguard the excellent quality of effluents characteristics. Most of the available mathematical models do not efficiently capture the MWWTP process, in such cases, the data-driven models are reliable and indispensable for effective modeling of effluents characteristics. In the present research, two nonlinear system identification (NSI) models namely; Hammerstein-Wiener model (HW) and nonlinear autoregressive with exogenous (NARX) neural network model, and a classical autoregressive (AR) model were proposed to predict the characteristics of the effluent of total suspended solids (TSSeff) and pHeff from Nicosia MWWTP in Cyprus. In order to attain the optimal models, two different combinations of input variables were cast through auto-correla-tion function and partial auto-correlation analysis. The prediction accuracy was evaluated using three statistical indicators the determination coefficient (DC), root mean square error (RMSE) and correlation coefficient (CC). The results of the appraisal indicated that the HW model outperformed NARX and AR models in predicting the pHeff, while the NARX model performed better than the HW and AR models for TSSeff prediction. It was evident that the accuracy of the HW increased averagely up to 18% with regards to the NARX model for pHeff . Likewise, the TSSeff performance increased averagely up to 25% with regards to the HW model. Also, in the validation phase, the HW model yielded DC, RMSE, and CC of 0.7355, 0.1071, and 0.8578 for pHeff, while the NARX model yielded 0.9804, 0.0049 and 0.9902 for TSSeff, respectively. For comparison with the traditional AR, the results showed that both HW and NARX models outperformed in (TSSeff) and pHeff prediction at the study location. Hence, the outcomes determined that the NSI model (i.e., HW and NARX) are reliable and resilient modeling tools that could be adopted for pHeff and TSSeff prediction.
  •  
2.
  • Abba, S.I., et al. (författare)
  • Integrating feature extraction approaches with hybrid emotional neural networks for water quality index modeling
  • 2022
  • Ingår i: Applied Soft Computing. - : Elsevier. - 1568-4946 .- 1872-9681. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of water quality prediction models is vital for aquatic ecosystems analysis. The traditional methods of water quality index (WQI) analysis are time-consuming and associated with a high degree of errors. These days, the application of artificial intelligence (AI) based models are trending for capturing nonlinear and complex processes. Therefore, the present study was conducted to predict the WQI in the Kinta River, Malaysia by employing the hybrid AI model i.e., GA-EANN (genetic algorithm-emotional artificial neural network). The extreme gradient boosting (XGB) and neuro-sensitivity analysis (NSA) approaches were utilized for feature extraction, and six different model combinations were derived to examine the relationship among the WQI with water quality (WQ) variables. The efficacy of the proposed hybrid GA-EANN model was evaluated against the backpropagation neural network (BPNN) and multilinear regression (MLR) models during calibration, and validation periods based on Nash–Sutcliffeefficiency (NSE), mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (CC) indicators. According to results of appraisal the hybrid GA-EANN model produced better outcomes (NSE = 0.9233/ 0.9018, MSE = 10.5195/ 9.7889 mg/L, RMSE = 3.2434/ 3.1287 mg/L, MAPE = 3.8032/ 3.0348 mg/L, CC = 0.9609/ 0.9496) in calibration/ validation phases than BPNN and MLR models. In addition, the results indicate the better performance and suitability of the hybrid GA-EANN model with five input parameters in predicting the WQI for the study site.
  •  
3.
  • Hadi, Sinan Jasim, et al. (författare)
  • Non-linear input variable selection approach integrated with non-tuned data intelligence model for streamflow pattern simulation
  • 2019
  • Ingår i: IEEE Access. - USA : IEEE. - 2169-3536. ; 7, s. 141533-141548
  • Tidskriftsartikel (refereegranskat)abstract
    • Streamflow modeling is considered as an essential component for water resources planning and management. There are numerous challenges related to streamflow prediction that are facing water resources engineers. These challenges due to the complex processes associated with several natural variables such as non-stationarity, non-linearity, and randomness. In this study, a new model is proposed to predict long-term streamflow. Several lags that cover several years are abstracted using the potential of Extreme Gradient Boosting (XGB) then after the selected inputs variables are imposed into the predictive model (i.e., Extreme Learning Machine (ELM)). The proposed model is compared with the stand-alone schema in which the optimum lags of the variables are supplied into the XGB and ELM models. Hydrological variables including rainfall, temperature and evapotranspiration are used to build the model and predict the streamflow at Goksu-Himmeti basin in Turkey. The results showed that XGB model performed an excellent result in which can be used for predicting the streamflow pattern. Also, it is clear from the attained results that the accuracy of the streamflow prediction using XGB technique could be improved when the high number of lags was used. However, the implementation of the XGB is tree-based technique in which several issues could be raised such as overfitting problem. The proposed schema XGBELM in which XGB approach is selected the correlated inputs and ranking them according to their importance; then after, the selected inputs are supplied into the ELM model for the prediction process. The XGBELM model outperformed the stand-alone schema of both XGB and ELM models and the high-lagged schema of the XGB. It is important to indicate that the XGBELM model found to improve the prediction ability with minimum variables number.
  •  
4.
  • Maroufpoor, Saman, et al. (författare)
  • A novel hybridized neuro-fuzzy model with an optimal input combination for dissolved oxygen estimation
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved oxygen (DO) is one of the main prerequisites to protect amphibian biological systems and to support powerful administration choices. This research investigated the applicability of Shannon’s entropy theory and correlation in obtaining the combination of the optimum inputs, and then the abstracted input variables were used to develop three novel intelligent hybrid models, namely, NF-GWO (neuro-fuzzy with grey wolf optimizer), NF-SC (subtractive clustering), and NF-FCM (fuzzy c-mean), for estimation of DO concentration. Seven different input combinations of water quality variables, including water temperature (TE), specific conductivity (SC), turbidity (Tu), and pH, were used to develop the prediction models at two stations in California. The performance of proposed models for DO estimation was assessed using statistical metrics and visual interpretation. The results revealed the better performance of NF-GWO for all input combinations than other models where its performance was improved by 24.2–66.2% and 14.9–31.2% in terms of CC (correlation coefficient) and WI (Willmott index) compared to standalone NF for different input combinations. Additionally, the MAE (mean absolute error) and RMSE (root mean absolute error) of the NF model were reduced using the NF-GWO model by 9.9–46.0% and 8.9–47.5%, respectively. Therefore, NF-GWO with all water quality variables as input can be considered the optimal model for predicting DO concentration of the two stations. In contrast, NF-SC performed worst for most of the input combinations. The violin plot of NF-GWO-predicted DO was found most similar to the violin plot of observed data. The dissimilarity with the observed violin was found high for the NF-FCM model. Therefore, this study promotes the hybrid intelligence models to predict DO concentration accurately and resolve complex hydro-environmental problems.
  •  
5.
  • Sammen, Saad Sh., et al. (författare)
  • Assessment of climate change impact on probable maximum floods in a tropical catchment
  • 2022
  • Ingår i: Journal of Theoretical and Applied Climatology. - : Springer. - 0177-798X .- 1434-4483. ; 148:1-2, s. 15-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The increases in extreme rainfall could increase the probable maximum flood (PMF) and pose a severe threat to the critical hydraulic infrastructure such as dams and flood protection structures. This study is conducted to assess the impact of climate change on PMF in a tropical catchment. Climate and inflow data of the Tenmengor reservoir, located in the state of Perak in Malaysia, have been used to calibrate and validate the hydrological model. The projected rainfall from regional climate model is used to generate probable maximum precipitation (PMP) for future periods. A hydrological model was used to simulate PMF from PMP estimated for the historical and two future periods, early (2031 − 2045) and late (2060 − 2075). The results revealed good performance of the hydrological model with Nash–Sutcliffe efficiency, 0.74, and the relative standard error, 0.51, during validation. The estimated rainfall depths were 89.5 mm, 106.3 mm, and 143.3 mm, respectively, for 5, 10, and 50 years of the return period. The study indicated an increase in PMP by 162% to 507% and 259% to 487% during early and late periods for different return periods ranging from 5 to 1000 years. This would cause an increase in PMF by 48.9% and 122.6% during early and late periods. A large increase in PMF indicates the possibility of devastating floods in the future in his tropical catchment due to climate change.
  •  
6.
  • Tao, Hai, et al. (författare)
  • Groundwater level prediction using machine learning models: A comprehensive review
  • 2022
  • Ingår i: Neurocomputing. - : Elsevier. - 0925-2312 .- 1872-8286. ; 489, s. 271-308
  • Forskningsöversikt (refereegranskat)abstract
    • Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles have been published, reporting the advances in this field up to 2018. However, the existing review articles do not cover several aspects of GWL simulations using ML, which are significant for scientists and practitioners working in hydrology and water resource management. The current review article aims to provide a clear understanding of the state-of-the-art ML models implemented for GWL modeling and the milestones achieved in this domain. The review includes all of the types of ML models employed for GWL modeling from 2008 to 2020 (138 articles) and summarizes the details of the reviewed papers, including the types of models, data span, time scale, input and output parameters, performance criteria used, and the best models identified. Furthermore, recommendations for possible future research directions to improve the accuracy of GWL prediction models and enhance the related knowledge are outlined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy