SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abbasi Saeed 1973 ) "

Sökning: WFRF:(Abbasi Saeed 1973 )

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Mats, 1966-, et al. (författare)
  • Particles in road and railroad tunnel air : sources, properties and abatement measures
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • High levels of air pollution are a common problem in both road and railroad tunnels. Sources and emission processes however differ significantly, as reflected by aerosols physical and chemical properties. As particle concentrations and properties affect exposure of and health effects for people on platforms and in vehicles, effective ways to reduce emissions and exposure are important. This study aims to improve the knowledge of the differences between PM10 in the rail and road tunnel environments, their sources and the possibilities to address problems with high particulate levels. Measurement campaigns were carried out at Arlanda Central, a railroad tunnel station below Arlanda airport and in Söderleden road tunnel, a road tunnel in central Stockholm.The results show large differences in concentration levels, size distributions and in composition of the particles. The railroad tunnel aerosol consisted of coarse particles with high iron content, while the properties of the coarse particles in the road tunnel were strongly influenced by whether the road surface was wet or dry. In wet conditions, concentrations were relatively low and iron and sulfur dominating elements, while silicon, potassium, calcium and iron from suspension and road wear dominated during dry conditions. The content of elemental carbon, most likely from the pantograph, were unexpectedly high in the railroad tunnel. An older type of train with a large proportion of mechanical brakes were suggested to be responsible to the main particle emissions in the railway tunnel. The report concludes with a discussion and proposals for action against particle sources in the various underground environments.
  •  
2.
  •  
3.
  •  
4.
  • Abbasi, Saeed, 1973-, et al. (författare)
  • A field investigation of the size, morphology and chemical composition of airborne particles in rail transport
  • 2010
  • Konferensbidrag (refereegranskat)abstract
    • The health effects of inhalable airborne particles are well documented. In the European Union the European Council mandates that the level of airborne particles with a diameter smaller than 10 µm (PM10) must not exceed an annual average of 40 µg/m3. Examples of possible sources from rail transport are mechanical brakes, wheel rail contact, current collectors, ballast, sleepers and masonry structures. In this regard, a series of field tests have been conducted on a regular Swedish track using a regional train instrumented with: particle measurement devices, temperature sensors in brake pads and sensors to measure the magnitude of train speed and a GPS.Two sampling points for airborne particles were designated in the train under frame. One of the sampling points was near a pad to rotor disc brake contact and a second global sampling point was chosen under the frame, but not near a mechanical brake or the wheel-rail contact. The first one was highly influenced by brake pad wear debris and the other one was influenced by all of the brake pads, wheel and rail wear debris as well as re-suspension. In each sampling points, three tubes were linked to three particle measurement devices. Two sets of Ptrak, Dustrak and Grimm devices were used. The Ptrak 8525 was an optical particle measurement device which could measure particle diameter in the size interval of 20 nm up to 1 micrometer. The Dustrak was used to measure particle mass concentration. The Grimm 1.109 was an aerosol spectrometer which counted number of particles from 0.25 micrometer to 32 micrometer in 31 intervals. These two Grimm devices were equipped with Millipore filters in the devices outlets to capture particles for further studies on morphology and matter of particles.The total number and size distribution of the particles for these two sampling points were registered and evaluated in different situations such as activating and deactivating electrical brake or train curve negotiating.During braking, three peaks of 250 nm, 350 nm and 600 nm in diameter, with the 350 nm peak dominating were identified in the fine particle region. In the coarse particle region, a peak of around 3-6 µm in diameter was discovered. The brake pad temperature effects on particle size distribution were also investigated and the results showed that the peak around 250 nm increased. Furthermore, the activation of electrical braking significantly reduced the number of airborne particles.A SEM was used to capture the images from collected particles on filters. Furthermore, an ICP-Ms method was used to investigate the elemental contents of the particulates on the filter.  In this case the main contribution belonged to Fe, Si, Al, Ca, Cu, Zn. The higher amount of some elements weights such as calcium, silicon, sodium and aluminum in the global sampling point filters revealed that ballast and concrete sleepers were the main sources for these particles although some of them originated from rail, wheel, brake disc and brake pad as well.
  •  
5.
  •  
6.
  • Abbasi, Saeed, 1973-, et al. (författare)
  • A study of friction modifiers on airborne wear particles from wheel-rail contact
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • Wheel-rail contact and its wear process are crucial issues in maintenance and operating of rolling stocks. During wheel-rail contact, materials in mating faces are worn off and some of them transferred to airborne particles. Eventhough the wear process in wheel-rail contact are well-known, few studies have been conducted on the airborne particles from wheel-rail contact.The purpose of this study is to investigate the effect of using different friction modifier on the amount of airbotne particles from wheel-rail contact in a laboratory simulation. In this regard, a series laboratory tests were used by using round head pin (R=25mm) and dead weight 40 N in a pin-on-disc machine. This set-up simulates a contact pressure around 750 MPa on the pin head.The amount of airborne particles and their characteristics were investigated in dry-contact, and non-dry contacts whereas a lubricant, Binol rail 510 and a friction modifier, tramsilence were used. According to the results, the effects of using Binol rail to reduce the amount of airborne particles were considerable.
  •  
7.
  •  
8.
  • Abbasi, Saeed, 1973-, et al. (författare)
  • A field test study of airborne wear particles from a running regional train
  • 2012
  • Ingår i: IMechE, Part F: Journal of Rail and Rapid Transit. - UK : Sage Publications. - 0954-4097 .- 2041-3017. ; 226:1, s. 95-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhalable airborne particles have inverse health affect. In railways, mechanical brakes, the wheel–rail contact, current collectors, ballast, sleepers, and masonry structures yield particulate matter. Field tests examined a Swedish track using a train instrumented with particle measurement devices, brake pad temperature sensors, and speed and brake sensors. The main objective of this field test was to study the characteristics of particles generated from disc brakes on a running train with an on-board measuring set-up.Two airborne particle sampling points were designated, one near a pad–rotor disc brake contact and a second under the frame, not near a mechanical brake or the wheel–rail contact; the numbers and size distributions of the particles detected were registered and evaluated under various conditions (e.g. activating/deactivating electrical brakes or negotiating curves). During braking, three speed/temperature-dependent particle peaks were identified in the fine region, representing particles 280 nm, 350 nm, and 600 nm in diameter. In the coarse region, a peak was discerned for particles 3–6 μm in diameter. Effects of brake pad temperature on particle size distribution were also investigated. Results indicate that the 280 nm peak increased with increasing temperature, and that electrical braking significantly reduced airborne particle numbers. FESEM images captured particles sizing down to 50 nm. The ICP-MS results indicated that Fe, Cu, Zn, Al, Ca, and Mg were the main elements constituting the particles. 
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy