SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abe Ryu) "

Search: WFRF:(Abe Ryu)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
4.
  •  
5.
  • Helminiak, K. G., et al. (author)
  • SEEDS DIRECT IMAGING OF THE RV-DETECTED COMPANION TO V450 ANDROMEDAE, AND CHARACTERIZATION OF THE SYSTEM
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 832:1
  • Journal article (peer-reviewed)abstract
    • We report the direct imaging detection of a low-mass companion to a young, moderately active star V450. And, that was previously identified with the radial velocity (RV) method. The companion was found in high-contrast images obtained with the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and RV measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be m(1) = 1.141(-0.091)(+0.037)and m(2) = 0.279(-0.020)(+0.023) M-circle dot. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. Hipparcos time-series photometry shows a periodicity of P = 5.743 day, which is also seen in the SOPHIE spectra as an RV modulation of the star A. We interpret it as being caused by spots on the stellar surface, and the star to be rotating with the given period. From the rotation and level of activity, we found that the system is 380(-100)(+220) Myr old, consistent with an isochrone analysis (220(-90)(+2120) Myr). This work may serve as a test case for future studies of low-mass stars, brown dwarfs, and exoplanets by combination of RV and direct imaging data.
  •  
6.
  • Hirao, Yuki, et al. (author)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
7.
  • Ryu, Tsuguru, et al. (author)
  • HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL VELOCITY TRENDS
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 825:2
  • Journal article (peer-reviewed)abstract
    • A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to gamma Hya B (0.61(-0.14)(+0.12)M(circle dot)), HD 5608 B (0.10 +/- 0.01M(circle dot)), and HD 109272 B (0.28 +/- 0.06M(circle dot)). For the remaining targets (iota Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M-Jup at projected separations of 1 ''-7 ''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets iota Dra b, HD 5608 b, and HD 14067 b.
  •  
8.
  • Ryu, Y. -H., et al. (author)
  • OGLE-2016-BLG-1190Lb : The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:1
  • Journal article (peer-reviewed)abstract
    • We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/ bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, M-p = 13.4 +/- 0.9 M-J, places it right at the deuteriumburning limit, i. e., the conventional boundary between planets and brown dwarfs. Its existence raises the question of whether such objects are really planets (formed within the disks of their hosts) or failed stars (lowmass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M-host = 0.89. +/- 0.07 M-circle dot, and the planet has a semimajor axis a similar to 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over < 1% of an orbital period.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view