SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abergel Alain) "

Sökning: WFRF:(Abergel Alain)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
2.
  • Berné, O., et al. (författare)
  • A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk
  • 2024
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 383:6686, s. 988-992
  • Tidskriftsartikel (refereegranskat)abstract
    • Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk.
  •  
3.
  • Berné, O., et al. (författare)
  • Formation of the methyl cation by photochemistry in a protoplanetary disk
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 621:7977, s. 56-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH3+ (refs. 1–3), but so far it has not been observed outside the Solar System 4,5. Alternative routes involving processes on grain surfaces have been invoked 6,7. Here we report James Webb Space Telescope observations of CH3+ in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation.
  •  
4.
  • Chown, Ryan, et al. (författare)
  • PDRs4All: IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 µm. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. These high-quality data allow for an unprecedentedly detailed view of AIBs. Aims. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR (i.e. the three H2 dissociation fronts), the atomic PDR, and the H II region. Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extracted five template spectra to represent the morphology and environment of the Orion Bar PDR. We investigated and characterised the AIBs in these template spectra. We describe the variations among them here. Results. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. The Orion Bar spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm with well-defined profiles. In addition, the spectra display a wealth of weaker features and sub-components. The widths of many AIBs show clear and systematic variations, being narrowest in the atomic PDR template, but showing a clear broadening in the H II region template while the broadest bands are found in the three dissociation front templates. In addition, the relative strengths of AIB (sub-)components vary among the template spectra as well. All AIB profiles are characteristic of class A sources as designated by Peeters (2022, A&A, 390, 1089), except for the 11.2 µm AIB profile deep in the molecular zone, which belongs to class B11.2. Furthermore, the observations show that the sub-components that contribute to the 5.75, 7.7, and 11.2 µm AIBs become much weaker in the PDR surface layers. We attribute this to the presence of small, more labile carriers in the deeper PDR layers that are photolysed away in the harsh radiation field near the surface. The 3.3/11.2 AIB intensity ratio decreases by about 40% between the dissociation fronts and the H II region, indicating a shift in the polycyclic aromatic hydrocarbon (PAH) size distribution to larger PAHs in the PDR surface layers, also likely due to the effects of photochemistry. The observed broadening of the bands in the molecular PDR is consistent with an enhanced importance of smaller PAHs since smaller PAHs attain a higher internal excitation energy at a fixed photon energy. Conclusions. Spectral-imaging observations of the Orion Bar using JWST yield key insights into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 µm AIB emission from class B11.2 in the molecular PDR to class A11.2 in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a “weeding out” of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called ‘grandPAHs’.
  •  
5.
  • De Putte, Dries Van, et al. (författare)
  • PDRs4All VIII. Mid-infrared emission line inventory of the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • Context . Mid-infrared emission features are important probes of the properties of ionized gas and hot or warm molecular gas, which are difficult to probe at other wavelengths. The Orion Bar photodissociation region (PDR) is a bright, nearby, and frequently studied target containing large amounts of gas under these conditions. Under the “PDRs4All” Early Release Science Program for JWST, a part of the Orion Bar was observed with MIRI integral field unit (IFU) spectroscopy, and these high-sensitivity IR spectroscopic images of very high angular resolution (0.2′′) provide a rich observational inventory of the mid-infrared (MIR) emission lines, while resolving the H II region, the ionization front, and multiple dissociation fronts. Aims . We list, identify, and measure the most prominent gas emission lines in the Orion Bar using the new MIRI IFU data. An initial analysis summarizes the physical conditions of the gas and demonstrates the potential of these new data and future IFU observations with JWST. Methods. The MIRI IFU mosaic spatially resolves the substructure of the PDR, its footprint cutting perpendicularly across the ionization front and three dissociation fronts. We performed an up-to-date data reduction, and extracted five spectra that represent the ionized, atomic, and molecular gas layers. We identified the observed lines through a comparison with theoretical line lists derived from atomic data and simulated PDR models. The identified species and transitions are summarized in the main table of this work, with measurements of the line intensities and central wavelengths. Results . We identified around 100 lines and report an additional 18 lines that remain unidentified. The majority consists of H I recombination lines arising from the ionized gas layer bordering the PDR. The H I line ratios are well matched by emissivity coefficients from H recombination theory, but deviate by up to 10% because of contamination by He I lines. We report the observed emission lines of various ionization stages of Ne, P, S, Cl, Ar, Fe, and Ni. We show how the Ne III/Ne II, S IV/S III, and Ar III/Ar II ratios trace the conditions in the ionized layer bordering the PDR, while Fe III/Fe II and Ni III/Ni II exhibit a different behavior, as there are significant contributions to Fe II and Ni II from the neutral PDR gas. We observe the pure-rotational H2 lines in the vibrational ground state from 0–0 S(1) to 0–0 S(8), and in the first vibrationally excited state from 1–1 S(5) to 1–1 S(9). We derive H2 excitation diagrams, and for the three observed dissociation fronts, the rotational excitation can be approximated with one thermal (∼700 K) component representative of an average gas temperature, and one nonthermal component (∼2700 K) probing the effect of UV pumping. We compare these results to an existing model of the Orion Bar PDR, and find that the predicted excitation matches the data qualitatively, while adjustments to the parameters of the PDR model are required to reproduce the intensity of the 0–0 S(6) to S(8) lines.
  •  
6.
  • Elyajouri, Meriem, et al. (författare)
  • PDRs4All V. Modelling the dust evolution across the illuminated edge of the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Interstellar dust particles, in particular carbonaceous nano-grains (like polycyclic aromatic hydrocarbons, fullerenes, and amorphous hydrogenated carbon), are critical players for the composition, energy budget, and dynamics of the interstellar medium (ISM). The dust properties, specifically the composition and size of dust grains are not static; instead, they exhibit considerable evolution triggered by variations in local physical conditions such as the density and gas temperature within the ISM, as is the case in photon-dominated regions (PDRs). The evolution of dust and its impact on the local physical and chemical conditions is thus a key question for understanding the first stages of star formation. Aims. From the extensive spectral and imaging data of the JWST PDRs4All program, we study the emission of dust grains within the Orion Bar – a well-known, highly far-UV (FUV)-irradiated PDR situated at the intersection between cold, dense molecular clouds, and warm ionized regions. The Orion Bar because of its edge-on geometry provides an exceptional benchmark for characterizing dust evolution and the associated driving processes under varying physical conditions. Our goal is to constrain the local properties of dust by comparing its emission to models. Taking advantage of the recent JWST data, in particular the spectroscopy of dust emission, we identify new constraints on dust and further previous works of dust modelling. Methods. To characterize interstellar dust across the Orion Bar, we follow its emission as traced by JWST NIRCam (at 3.35 and 4.8 µm) and MIRI (at 7.7, 11.3, 15.0, and 25.5 µm) broad band images, along with NIRSpec and MRS spectroscopic observations. First, we constrain the minimum size and hydrogen content of carbon nano-grains from a comparison between the observed dust emission spectra and the predictions of the Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS) coupled to the numerical code DustEM. Using this dust model, we then perform 3D radiative transfer simulations of dust emission with the SOC code (Scattering with OpenCL) and compare to data obtained along well chosen profiles across the Orion Bar. Results. The JWST data allows us, for the first time, to spatially resolve the steep variation of dust emission at the illuminated edge of the Orion Bar PDR. By considering a dust model with carbonaceous nano-grains and submicronic coated silicate grains, we derive unprecedented constraints on the properties of across the Orion Bar. To explain the observed emission profiles with our simulations, we find that the nano-grains must be strongly depleted with an abundance (relative to the gas) 15 times less than in the diffuse ISM. The NIRSpec and MRS spectroscopic observations reveal variations in the hydrogenation of the carbon nano-grains. The lowest hydrogenation levels are found in the vicinity of the illuminating stars suggesting photo-processing while more hydrogenated nano-grains are found in the cold and dense molecular region, potentially indicative of larger grains.
  •  
7.
  • Gasman, Danny, et al. (författare)
  • MINDS Abundant water and varying C/O across the disk of Sz 98 as seen by JWST/MIRI
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Mid-InfraRed Instrument (MIRI) Medium Resolution Spectrometer (MRS) on board the James Webb Space Telescope (JWST) allows us to probe the inner regions of protoplanetary disks, where the elevated temperatures result in an active chemistry and where the gas composition may dictate the composition of planets forming in this region. The disk around the classical T Tauri star Sz 98, which has an unusually large dust disk in the millimetre with a compact core, was observed with the MRS, and we examine its spectrum here.Aims. We aim to explain the observations and put the disk of Sz 98 in context with other disks, with a focus on the H2O emission through both its ro-vibrational and pure rotational emission. Furthermore, we compare our chemical findings with those obtained for the outer disk from Atacama Large Millimeter/submillimeter Array (ALMA) observations.Methods. In order to model the molecular features in the spectrum, the continuum was subtracted and local thermodynamic equilibrium (LTE) slab models were fitted. The spectrum was divided into different wavelength regions corresponding to H2O lines of different excitation conditions, and the slab model fits were performed individually per region.Results. We confidently detect CO, H2O, OH, CO2, and HCN in the emitting layers. Despite the plethora of H2O lines, the isotopo-logue (H2O)-O-18 is not detected. Additionally, no other organics, including C2H2, are detected. This indicates that the C/O ratio could be substantially below unity, in contrast with the outer disk. The H2O emission traces a large radial disk surface region, as evidenced by the gradually changing excitation temperatures and emitting radii. Additionally, the OH and CO2 emission is relatively weak. It is likely that H2O is not significantly photodissociated, either due to self-shielding against the stellar irradiation, or UV shielding from small dust particles. While H2O is prominent and OH is relatively weak, the line fluxes in the inner disk of Sz 98 are not outliers compared to other disks.Conclusions. The relative emitting strength of the different identified molecular features points towards UV shielding of H2O in the inner disk of Sz 98, with a thin layer of OH on top. The majority of the organic molecules are either hidden below the dust continuum, or not present. In general, the inferred composition points to a sub-solar C/O ratio (<0.5) in the inner disk, in contrast with the larger than unity C/O ratio in the gas in the outer disk found with ALMA.
  •  
8.
  • Grant, Sierra L., et al. (författare)
  • MINDS. The Detection of 13 CO 2 with JWST-MIRI Indicates Abundant CO 2 in a Protoplanetary Disk
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 947:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST-MIRI Medium Resolution Spectrometer (MRS) spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey Guaranteed Time Observations program. Emission from 12CO213CO2, H2O, HCN, C2H2, and OH is identified with 13CO2 being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few astronomical units of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The Q branches of these molecules, including those of hot bands, are particularly sensitive to temperature and column density. We find that the 12CO2 emission in the GW Lup disk is coming from optically thick emission at a temperature of ∼400 K. 13CO2 is optically thinner and based on a lower temperature of ∼325 K, and thus may be tracing deeper into the disk and/or a larger emitting radius than 12CO2. The derived N CO 2 / N H 2 O ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on Spitzer-InfraRed-Spectrograph data. This high column density ratio may be due to an inner cavity with a radius in between the H2O and CO2 snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.
  •  
9.
  • Habart, Emilie, et al. (författare)
  • PDRs4All II. JWST’s NIR and MIR imaging view of the Orion Nebula
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The James Webb Space Telescope (JWST) has captured the most detailed and sharpest infrared (IR) images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). Aims. We investigate the fundamental interaction of far-ultraviolet (FUV) photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Methods. We utilized NIRCam and MIRI to obtain sub-arcsecond images over ∼150′′ and 42′′ in key gas phase lines (e.g., Pa α, Br α, [FeII] 1.64 µm, H2 1–0 S(1) 2.12 µm, 0–0 S(9) 4.69 µm), aromatic and aliphatic infrared bands (aromatic infrared bands at 3.3–3.4 µm, 7.7, and 11.3 µm), dust emission, and scattered light. Their emission are powerful tracers of the IF and DF, FUV radiation field and density distribution. Using NIRSpec observations the fractional contributions of lines, AIBs, and continuum emission to our NIRCam images were estimated. A very good agreement is found for the distribution and intensity of lines and AIBs between the NIRCam and NIRSpec observations. Results. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of ∼0.1–1′′ (∼0.0002–0.002 pc or ∼40–400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. The spatial distribution of the AIBs reveals that the PDR edge is steep and is followed by an extensive warm atomic layer up to the DF with multiple ridges. A complex, structured, and folded H0/H2 DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar as our observations show that a 3D “terraced” geometry is required to explain the JWST observations. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. Conclusions. This study offers an unprecedented dataset to benchmark and transform PDR physico-chemical and dynamical models for the JWST era. A fundamental step forward in our understanding of the interaction of FUV photons with molecular clouds and the role of FUV irradiation along the star formation sequence is provided.
  •  
10.
  • Henning, Thomas, et al. (författare)
  • MINDS : The JWST MIRI Mid-INfrared Disk Survey
  • 2024
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 136:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of protoplanetary disks has become increasingly important with the Kepler satellite finding that exoplanets are ubiquitous around stars in our galaxy and the discovery of enormous diversity in planetary system architectures and planet properties. High-resolution near-IR and ALMA images show strong evidence for ongoing planet formation in young disks. The JWST MIRI mid-INfrared Disk Survey (MINDS) aims to (1) investigate the chemical inventory in the terrestrial planet-forming zone across stellar spectral type, (2) follow the gas evolution into the disk dispersal stage, and (3) study the structure of protoplanetary and debris disks in the thermal mid-IR. The MINDS survey will thus build a bridge between the chemical inventory of disks and the properties of exoplanets. The survey comprises 52 targets (Herbig Ae stars, T Tauri stars, very low-mass stars and young debris disks). We primarily obtain MIRI/MRS spectra with high signal-to-noise ratio (∼100–500) covering the complete wavelength range from 4.9 to 27.9 μm. For a handful of selected targets we also obtain NIRSpec IFU high resolution spectroscopy (2.87–5.27 μm). We will search for signposts of planet formation in thermal emission of micron-sized dust—information complementary to near-IR scattered light emission from small dust grains and emission from large dust in the submillimeter wavelength domain. We will also study the spatial structure of disks in three key systems that have shown signposts for planet formation, TW Hya and HD 169142 using the MIRI coronagraph at 15.5 μm and 10.65 μm respectively and PDS 70 using NIRCam imaging in the 1.87 μm narrow and the 4.8 μm medium band filter. We provide here an overview of the MINDS survey and showcase the power of the new JWST mid-IR molecular spectroscopy with the TW Hya disk spectrum where we report the detection of the molecular ion CH3+ and the robust confirmation of HCO+ earlier detected with Spitzer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy