SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abergel Chantal) "

Sökning: WFRF:(Abergel Chantal)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekeberg, Tomas, et al. (författare)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
2.
  •  
3.
  • Ekeberg, Tomas, 1983-, et al. (författare)
  • Three-dimensional structure determination with an X-ray laser
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Three-dimensional structure determination of a non-crystalline virus has been achieved from a set of randomly oriented continuous diffraction patterns captured with an X-ray laser. Intense, ultra-short X-ray pulses intercepted a beam of single mimivirus particles, producing single particle X-ray diffraction patterns that are assembled into a three-dimensional amplitude distribution based on statistical consistency. Phases are directly retrieved from the assembled Fourier distribution to synthesize a three-dimensional image. The resulting electron density reveals a pseudo-icosahedral asymmetric virion structure with a compartmentalized interior, within which the DNA genome occupies only about a fifth of the volume enclosed by the capsid. Additional electron microscopy data indicate the genome has a chromatin-like fiber structure that has not previously been observed in a virus. 
  •  
4.
  • Okamoto, Kenta, et al. (författare)
  • Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly
  • 2018
  • Ingår i: Virology. - : Elsevier BV. - 0042-6822 .- 1096-0341. ; 516, s. 239-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30 nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.
  •  
5.
  • Okamoto, Kenta, et al. (författare)
  • Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 mu m in length and 0.9 mu m in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
  •  
6.
  • Philippe, Nadege, et al. (författare)
  • Pandoraviruses : Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 341:6143, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Ten years ago, the discovery of Mimivirus, a virus infecting Acanthamoeba, initiated a reappraisal of the upper limits of the viral world, both in terms of particle size (>0.7 micrometers) and genome complexity (>1000 genes), dimensions typical of parasitic bacteria. The diversity of these giant viruses (the Megaviridae) was assessed by sampling a variety of aquatic environments and their associated sediments worldwide. We report the isolation of two giant viruses, one off the coast of central Chile, the other from a freshwater pond near Melbourne (Australia), without morphological or genomic resemblance to any previously defined virus families. Their micrometer-sized ovoid particles contain DNA genomes of at least 2.5 and 1.9 megabases, respectively. These viruses are the first members of the proposed "Pandoravirus" genus, a term reflecting their lack of similarity with previously described microorganisms and the surprises expected from their future study.
  •  
7.
  • Seibert, M. Marvin, et al. (författare)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
8.
  • Yoon, Chun Hong, et al. (författare)
  • Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering
  • 2011
  • Ingår i: Optics Express. - 1094-4087. ; 19:17, s. 16542-16549
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy