SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abermann S.) "

Sökning: WFRF:(Abermann S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abermann, S., et al. (författare)
  • Comparative study on the impact of TiN and Mo metal gates on MOCVD-grown HfO2 and ZrO2 high-kappa dielectrics for CMOS technology
  • 2007
  • Ingår i: Physics of Semiconductors, Pts A and B. - : AIP. - 9780735403970 ; , s. 293-294
  • Konferensbidrag (refereegranskat)abstract
    • We compare metal oxide semiconductor capacitors, investigating Titanium-Nitride and Molybdenum as gate materials, as well as metal organic chemical vapor deposited ZrO2 and HfO2 as high-kappa dielectrics, respectively. The impact of different annealing steps on the electrical characteristics of the various gate stacks is a further issue. The positive effect of post metallization annealing in forming gas atmosphere as well as observed mid-gap pinning of TiN and Mo metal gates is presented.
  •  
2.
  • Abermann, S., et al. (författare)
  • Impact of Al-, Ni-, TiN-, and Mo-metal gates on MOCVD-grown HfO2 and ZrO2 high-k dielectrics
  • 2007
  • Ingår i: Microelectronics and reliability. - : Elsevier BV. - 0026-2714 .- 1872-941X. ; 47:4-5, s. 536-539
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we compare the impacts of nickel (Ni), titanium-nitride (TiN), molybdenum (Mo), and aluminium (Al), gates on MOS capacitors incorporating HfO2- or ZrO2-dielectrics. The primary focus lies on interface trapping, oxide charging, and thermodynamical stability during different annealing steps of these gate stacks. Whereas Ni, Mo, and especially TIN are investigated as most promising candidates for future CMOS devices, Al acted as reference gate material to benchmark the parameters. Post-metallization annealing of both, TiN- and Mo-stacks, resulted in very promising electrical characteristics. However, gate stacks annealed at temperatures of 800 degrees C or 950 degrees C show thermodynamic instability and related undesirable high leakage currents.
  •  
3.
  •  
4.
  • Abermann, S., et al. (författare)
  • Processing and evaluation of metal gate/high-k/Si capacitors incorporating Al, Ni, TiN, and Mo as metal gate, and ZrO2 and HfO2 as high-k dielectric
  • 2007
  • Ingår i: Microelectronic Engineering. - : Elsevier BV. - 0167-9317 .- 1873-5568. ; 84:5-8, s. 1635-1638
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate various metal gate/high-k/Si capacitors by their resulting electrical characteristics. Therefore, we process MOS gate stacks incorporating aluminium (Al), nickel (Ni), titanium-nitride (TiN), and molybdenum (Mo) as the gate material, and metal organic chemical vapour deposited (MOCVD) ZrO2 and HfO2 as the gate dielectric, respectively. The influence of the processing sequence - especially of the thermal annealing treatment - on the electrical characteristics of the various gate stacks is being investigated. Whereas post metallization annealing in forming gas atmosphere improves capacitance-voltage behaviour (due to reduced interface-, and oxide charge density), current-voltage characteristics degrade due to a higher leakage current after thermal treatment at higher temperatures. The Flatband-voltage values for the TiN-, Mo-, and Ni-capacitors indicate mid-gap pinning of the metal gates, however, Ni seems to be thermally unstable on ZrO2, at least within the process scheme we applied.
  •  
5.
  •  
6.
  • Abermann, S., et al. (författare)
  • Processing and evaluation of metal gate/high-kappa/Si capacitors incorporating Al, Ni, TiN, and Mo as metal gate, and ZrO2 and HfO2 as high-kappa dielectric
  • 2007
  • Ingår i: Microelectronic Engineering. - : Elsevier BV. - 0167-9317 .- 1873-5568. ; 84:5-8, s. 1635-1638
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluate various metal gate/high-K/Si capacitors by their resulting electrical characteristics. Therefore, we process MOS gate stacks incorporating aluminium (Al), nickel (Ni), titanium-nitride (TiN), and molybdenum (Mo) as the gate material, and metal organic chemical vapour deposited (MOCVD) ZrO2 and HfO2 as the gate dielectric, respectively. The influence of the processing sequence - especially of the thermal annealing treatment - on the electrical characteristics of the various gate stacks is being investigated. Whereas post metallization annealing in forming gas atmosphere improves capacitance-voltage behaviour (due to reduced interface-, and oxide charge density), current-voltage characteristics degrade due to a higher leakage current after thermal treatment at higher temperatures. The Flatband-voltage values for the TiN-, Mo-, and Ni-capacitors indicate mid-gap pinning of the metal gates, however, Ni seems to be thermally unstable on ZrO2, at least within the process scheme we applied.
  •  
7.
  • Bethge, O., et al. (författare)
  • Fabrication of highly ordered nanopillar arrays and defined etching of ALD-grown all-around platinum films
  • 2012
  • Ingår i: Journal of Micromechanics and Microengineering. - : IOP Publishing. - 0960-1317 .- 1361-6439. ; 22:8, s. 085013-
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly ordered arrays of silicon nanopillars are etched by means of induced-coupled-plasma reactive-ion etching (RIE). The sulfur hexafluoride/oxygen (SF6/O-2)-based cryogenic process allows etching of nanopillars with an aspect ratio higher than 20:1 and diameters down to 30 nm. Diameters can be further reduced by a well-controllable oxidation process in O-2-ambient and a subsequent etching in hydrofluoric acid. This approach effectively removes surface contaminations induced by former RIE, as shown by x-ray photoelectron spectroscopy. Atomic layer deposition (ALD) is used to establish an all-around Al2O3/Pt stack onto the vertically aligned nanorods. Two approaches are successfully applied to remove the resistant Pt coating from the nanopillar tips.
  •  
8.
  • Kropp, Heather, et al. (författare)
  • Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy