SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abid Muhammad Adil) "

Sökning: WFRF:(Abid Muhammad Adil)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abid, Muhammad Adil, et al. (författare)
  • A Genetic Algorithm for Optimizing Mobile Stroke Unit Deployment
  • 2023
  • Ingår i: Procedia Computer Science. - : Elsevier. - 1877-0509. ; 225, s. 3536-3545
  • Tidskriftsartikel (refereegranskat)abstract
    • A mobile stroke unit (MSU) is an advanced ambulance equipped with specialized technology and trained healthcare personnel to provide on-site diagnosis and treatment for stroke patients. Providing efficient access to healthcare (in a viable way) requires optimizing the placement of MSUs. In this study, we propose a time-efficient method based on a genetic algorithm (GA) to find the most suitable ambulance sites for the placement of MSUs (given the number of MSUs and a set of potential sites). We designed an efficient encoding scheme for the input data (the number of MSUs and potential sites) and developed custom selection, crossover, and mutation operators that are tailored according to the characteristics of the MSU allocation problem. We present a case study on the Southern Healthcare Region in Sweden to demonstrate the generality and robustness of our proposed GA method. Particularly, we demonstrate our method's flexibility and adaptability through a series of experiments across multiple settings. For the considered scenario, our proposed method outperforms the exhaustive search method by finding the best locations within 0.16, 1.44, and 10.09 minutes in the deployment of three MSUs, four MSUs, and five MSUs, resulting in 8.75x, 16.36x, and 24.77x faster performance, respectively. Furthermore, we validate the method's robustness by iterating GA multiple times and reporting its average fitness score (performance convergence). In addition, we show the effectiveness of our method by evaluating key hyperparameters, that is, population size, mutation rate, and the number of generations.
  •  
2.
  • Amouzad Mahdiraji, Saeid, et al. (författare)
  • An Optimization Model for the Placement of Mobile Stroke Units
  • 2024
  • Ingår i: Advanced Research in Technologies, Information, Innovation and Sustainability - 3rd International Conference, ARTIIS 2023, Proceedings. - : Springer. - 1865-0937 .- 1865-0929. - 9783031488573 - 9783031488580 ; 1935 CCIS, s. 297-310
  • Konferensbidrag (refereegranskat)abstract
    • Mobile Stroke Units (MSUs) are specialized ambulances that can diagnose and treat stroke patients; hence, reducing the time to treatment for stroke patients. Optimal placement of MSUs in a geographic region enables to maximize access to treatment for stroke patients. We contribute a mathematical model to optimally place MSUs in a geographic region. The objective function of the model takes the tradeoff perspective, balancing between the efficiency and equity perspectives for the MSU placement. Solving the optimization problem enables to optimize the placement of MSUs for the chosen tradeoff between the efficiency and equity perspectives. We applied the model to the Blekinge and Kronoberg counties of Sweden to illustrate the applicability of our model. The experimental findings show both the correctness of the suggested model and the benefits of placing MSUs in the considered regions.
  •  
3.
  • Shafeeque, Muhammad, et al. (författare)
  • Understanding temporary reduction in atmospheric pollution and its impacts on coastal aquatic system during COVID-19 lockdown : a case study of South Asia
  • 2021
  • Ingår i: Geomatics, Natural Hazards and Risk. - UK : Taylor & Francis. - 1947-5705 .- 1947-5713. ; 12:1, s. 560-580
  • Tidskriftsartikel (refereegranskat)abstract
    • The strict lockdown measures not only contributed to curbing the spread of COVID-19 infection, but also improved the environmental conditions worldwide. The main goal of the current study was to investigate the co-benefits of COVID-19 lockdown on the atmosphere and aquatic ecological system under restricted anthropogenic activities in South Asia. The remote sensing data (a) NO2 emissions from the Ozone Monitoring Instrument (OMI), (b) Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and (c) chlorophyll (Chl-a) and turbidity data from MODIS-Aqua Level-3 during Jan–Oct (2020) were analyzed to assess the changes in air and water pollution compared to the last five years (2015–2019). The interactions between the air and water pollution were also investigated using overland runoff and precipitation in 2019 and 2020 at a monthly scale to investigate the anomalous events, which could affect the N loading to coastal regions. The results revealed a considerable drop in the air and water pollution (30–40% reduction in NO2 emissions, 45% in AOD, 50% decline in coastal Chl-a concentration, and 29% decline in turbidity) over South Asia. The rate of reduction in NO2 emissions was found the highest for Lahore (32%), New Delhi (31%), Ahmadabad (29%), Karachi (26%), Hyderabad (24%), and Chennai (17%) during the strict lockdown period from Apr–Jun, 2020. A positive correlation between AOD and NO2 emissions (0.23–0.50) implies that a decrease in AOD is attributed to a reduction in NO2. It was observed that during strict lockdown, the turbidity has decreased by 29%, 11%, 16%, and 17% along the coastal regions of Karachi, Mumbai, Calcutta, and Dhaka, respectively, while a 5–6% increase in turbidity was seen over the Madras during the same period. The findings stress the importance of reduced N emissions due to halted fossil fuel consumption and their relationships with the reduced air and water pollution. It is concluded that the atmospheric and hydrospheric environment can be improved by implementing smart restrictions on fossil fuel consumption with a minimum effect on socioeconomics in the region. Smart constraints on fossil fuel usage are recommended to control air and water pollution even after the social and economic activities resume business-as-usual scenario.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy