SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abid Nosheen 1993 ) "

Search: WFRF:(Abid Nosheen 1993 )

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abid, Nosheen, 1993-, et al. (author)
  • Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning
  • 2021
  • In: Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA). - : IEEE. ; , s. 74-81
  • Conference paper (peer-reviewed)abstract
    • Massive wildfires not only in Australia, but also worldwide are burning millions of hectares of forests and green land affecting the social, ecological, and economical situation. Widely used indices-based threshold methods like Normalized Burned Ratio (NBR) require a huge amount of data preprocessing and are specific to the data capturing source. State-of-the-art deep learning models, on the other hand, are supervised and require domain experts knowledge for labeling the data in huge quantity. These limitations make the existing models difficult to be adaptable to new variations in the data and capturing sources. In this work, we have proposed an unsupervised deep learning based architecture to map the burnt regions of forests by learning features progressively. The model considers small patches of satellite imagery and classifies them into burnt and not burnt. These small patches are concatenated into binary masks to segment out the burnt region of the forests. The proposed system is composed of two modules: 1) a state-of-the-art deep learning architecture for feature extraction and 2) a clustering algorithm for the generation of pseudo labels to train the deep learning architecture. The proposed method is capable of learning the features progressively in an unsupervised fashion from the data with pseudo labels, reducing the exhausting efforts of data labeling that requires expert knowledge. We have used the realtime data of Sentinel-2 for training the model and mapping the burnt regions. The obtained F1-Score of 0.87 demonstrates the effectiveness of the proposed model.
  •  
2.
  • Abid, Nosheen, 1993- (author)
  • Deep Learning for Geo-referenced Data : Case Study: Earth Observation
  • 2021
  • Licentiate thesis (other academic/artistic)abstract
    • The thesis focuses on machine learning methods for Earth Observation (EO) data, more specifically, remote sensing data acquired by satellites and drones. EO plays a vital role in monitoring the Earth’s surface and modelling climate change to take necessary precautionary measures. Initially, these efforts were dominated by methods relying on handcrafted features and expert knowledge. The recent advances of machine learning methods, however, have also led to successful applications in EO. This thesis explores supervised and unsupervised approaches of Deep Learning (DL) to monitor natural resources of water bodies and forests. The first study of this thesis introduces an Unsupervised Curriculum Learning (UCL) method based on widely-used DL models to classify water resources from RGB remote sensing imagery. In traditional settings, human experts labeled images to train the deep models which is costly and time-consuming. UCL, instead, can learn the features progressively in an unsupervised fashion from the data, reducing the exhausting efforts of labeling. Three datasets of varying resolution are used to evaluate UCL and show its effectiveness: SAT-6, EuroSAT, and PakSAT. UCL outperforms the supervised methods in domain adaptation, which demonstrates the effectiveness of the proposed algorithm. The subsequent study is an extension of UCL for the multispectral imagery of Australian wildfires. This study has used multispectral Sentinel-2 imagery to create the dataset for the forest fires ravaging Australia in late 2019 and early 2020. 12 out of the 13 spectral bands of Sentinel-2 are concatenated in a way to make them suitable as a three-channel input to the unsupervised architecture. The unsupervised model then classified the patches as either burnt or not burnt. This work attains 87% F1-Score mapping the burnt regions of Australia, demonstrating the effectiveness of the proposed method. The main contributions of this work are (i) the creation of two datasets using Sentinel-2 Imagery, PakSAT dataset and Australian Forest Fire dataset; (ii) the introduction of UCL that learns the features progressively without the need of labelled data; and (iii) experimentation on relevant datasets for water body and forest fire classification. This work focuses on patch-level classification which could in future be expanded to pixel-based classification. Moreover, the methods proposed in this study can be extended to the multi-class classification of aerial imagery. Further possible future directions include the combination of geo-referenced meteorological and remotely sensed image data to explore proposed methods. Lastly, the proposed method can also be adapted to other domains involving multi-spectral and multi-modal input, such as, historical documents analysis, forgery detection in documents, and Natural Language Processing (NLP) classification tasks.
  •  
3.
  • Abid, Nosheen, 1993-, et al. (author)
  • UCL: Unsupervised Curriculum Learning for Utility Pole Detection from Aerial Imagery
  • 2022
  • In: Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA). - : IEEE. - 9781665456425
  • Conference paper (peer-reviewed)abstract
    • This paper introduces a machine learning-based approach for detecting electric poles, an essential part of power grid maintenance. With the increasing popularity of deep learning, several such approaches have been proposed for electric pole detection. However, most of these approaches are supervised, requiring a large amount of labeled data, which is time-consuming and labor-intensive. Unsupervised deep learning approaches have the potential to overcome the need for huge amounts of training data. This paper presents an unsupervised deep learning framework for utility pole detection. The framework combines Convolutional Neural Network (CNN) and clustering algorithms with a selection operation. The CNN architecture for extracting meaningful features from aerial imagery, a clustering algorithm for generating pseudo labels for the resulting features, and a selection operation to filter out reliable samples to fine-tune the CNN architecture further. The fine-tuned version then replaces the initial CNN model, thus improving the framework, and we iteratively repeat this process so that the model learns the prominent patterns in the data progressively. The presented framework is trained and tested on a small dataset of utility poles provided by “Mention Fuvex” (a Spanish company utilizing long-range drones for power line inspection). Our extensive experimentation demonstrates the progressive learning behavior of the proposed method and results in promising classification scores with significance test having p−value<0.00005 on the utility pole dataset.
  •  
4.
  • Abid, Nosheen, 1993-, et al. (author)
  • UCL: Unsupervised Curriculum Learning for Water Body Classification from Remote Sensing Imagery
  • 2021
  • In: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier. - 1569-8432 .- 1872-826X. ; 105
  • Journal article (peer-reviewed)abstract
    • This paper presents a Convolutional Neural Networks (CNN) based Unsupervised Curriculum Learning approach for the recognition of water bodies to overcome the stated challenges for remote sensing based RGB imagery. The unsupervised nature of the presented algorithm eliminates the need for labelled training data. The problem is cast as a two class clustering problem (water and non-water), while clustering is done on deep features obtained by a pre-trained CNN. After initial clusters have been identified, representative samples from each cluster are chosen by the unsupervised curriculum learning algorithm for fine-tuning the feature extractor. The stated process is repeated iteratively until convergence. Three datasets have been used to evaluate the approach and show its effectiveness on varying scales: (i) SAT-6 dataset comprising high resolution aircraft images, (ii) Sentinel-2 of EuroSAT, comprising remote sensing images with low resolution, and (iii) PakSAT, a new dataset we created for this study. PakSAT is the first Pakistani Sentinel-2 dataset designed to classify water bodies of Pakistan. Extensive experiments on these datasets demonstrate the progressive learning behaviour of UCL and reported promising results of water classification on all three datasets. The obtained accuracies outperform the supervised methods in domain adaptation, demonstrating the effectiveness of the proposed algorithm.
  •  
5.
  • Adewumi, Oluwatosin, 1978-, et al. (author)
  • Småprat : DialoGPT for Natural Language Generation of Swedish Dialogue by Transfer Learning
  • 2022
  • In: Vol. 3 (2022): Proceedings of the Northern Lights Deep Learning Workshop 2022. - : Septentrio Academic Publishing. - 2703-6928.
  • Conference paper (peer-reviewed)abstract
    • Building open-domain conversational systems (or chatbots) that produce convincing responses is a recognized challenge. Recent state-of-the-art (SoTA) transformer-based models for the generation of natural language dialogue have demonstrated impressive performance in simulating human-like, single-turn conversations in English.This work investigates, by an empirical study, the potential for transfer learning of such models to Swedish language. DialoGPT, an English language pre-trained model, is adapted by training on three different Swedish language conversational datasets obtained from publicly available sources: Reddit, Familjeliv and the GDC. Perplexity score (an automated intrinsic metric) and surveys by human evaluation were used to assess the performances of the fine-tuned models. We also compare the DialoGPT experiments with an attention-mechanism-based seq2seq baseline model, trained on the GDC dataset. The results indicate that the capacity for transfer learning can be exploited with considerable success. Human evaluators asked to score the simulated dialogues judged over 57% of the chatbot responses to be human-like for the model trained on the largest (Swedish) dataset. The work agrees with the hypothesis that deep monolingual models learn some abstractions which generalize across languages. We contribute the codes, datasets and model checkpoints and host the demos on the HuggingFace platform.
  •  
6.
  • Adewumi, Oluwatosin, 1978-, et al. (author)
  • T5 for Hate Speech, Augmented Data, and Ensemble
  • 2023
  • In: Sci. - : MDPI. - 2413-4155. ; 5:4
  • Journal article (peer-reviewed)abstract
    • We conduct relatively extensive investigations of automatic hate speech (HS) detection using different State-of-The-Art (SoTA) baselines across 11 subtasks spanning six different datasets. Our motivation is to determine which of the recent SoTA models is best for automatic hate speech detection and what advantage methods, such as data augmentation and ensemble, may have on the best model, if any. We carry out six cross-task investigations. We achieve new SoTA results on two subtasks—macro F1 scores of 91.73% and 53.21% for subtasks A and B of the HASOC 2020 dataset, surpassing previous SoTA scores of 51.52% and 26.52%, respectively. We achieve near-SoTA results on two others—macro F1 scores of 81.66% for subtask A of the OLID 2019 and 82.54% for subtask A of the HASOC 2021, in comparison to SoTA results of 82.9% and 83.05%, respectively. We perform error analysis and use two eXplainable Artificial Intelligence (XAI) algorithms (Integrated Gradient (IG) and SHapley Additive exPlanations (SHAP)) to reveal how two of the models (Bi-Directional Long Short-Term Memory Network (Bi-LSTM) and Text-to-Text-Transfer Transformer (T5)) make the predictions they do by using examples. Other contributions of this work are: (1) the introduction of a simple, novel mechanism for correcting Out-of-Class (OoC) predictions in T5, (2) a detailed description of the data augmentation methods, and (3) the revelation of the poor data annotations in the HASOC 2021 dataset by using several examples and XAI (buttressing the need for better quality control). We publicly release our model checkpoints and codes to foster transparency.
  •  
7.
  • Sabry, Sana Sabah, et al. (author)
  • HaT5: Hate Language Identification using Text-to-Text Transfer Transformer
  • 2022
  • In: 2022 International Joint Conference on Neural Networks (IJCNN): Conference Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE).
  • Conference paper (peer-reviewed)abstract
    • We investigate the performance of a state-of-the-art (SoTA) architecture T5 (available on the SuperGLUE) and compare it with 3 other previous SoTA architectures across 5 different tasks from 2 relatively diverse datasets. The datasets are diverse in terms of the number and types of tasks they have. To improve performance, we augment the training data by using a new autoregressive conversational AI model checkpoint. We achieve near-SoTA results on a couple of the tasks - macro F1 scores of 81.66% for task A of the OLID 2019 dataset and 82.54% for task A of the hate speech and offensive content (HASOC) 2021 dataset, where SoTA are 82.9% and 83.05%, respectively. We perform error analysis and explain why one of the models (Bi-LSTM) makes the predictions it does by using a publicly available algorithm: Integrated Gradient (IG). This is because explainable artificial intelligence (XAI) is essential for earning the trust of users. The main contributions of this work are the implementation method of T5, which is discussed; the data augmentation, which brought performance improvements; and the revelation on the shortcomings of the HASOC 2021 dataset. The revelation shows the difficulties of poor data annotation by using a small set of examples where the T5 model made the correct predictions, even when the ground truth of the test set were incorrect (in our opinion). We also provide our model checkpoints on the HuggingFace hub1. https://huggingface.co/sana-ngu/HaT5_augmentation https://huggingface.co/sana-ngu/HaT5.
  •  
8.
  • Simistira Liwicki, Foteini, et al. (author)
  • Bimodal electroencephalography-functional magnetic resonance imaging dataset for inner-speech recognition
  • 2023
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 10
  • Journal article (peer-reviewed)abstract
    • The recognition of inner speech, which could give a ‘voice’ to patients that have no ability to speak or move, is a challenge for brain-computer interfaces (BCIs). A shortcoming of the available datasets is that they do not combine modalities to increase the performance of inner speech recognition. Multimodal datasets of brain data enable the fusion of neuroimaging modalities with complimentary properties, such as the high spatial resolution of functional magnetic resonance imaging (fMRI) and the temporal resolution of electroencephalography (EEG), and therefore are promising for decoding inner speech. This paper presents the first publicly available bimodal dataset containing EEG and fMRI data acquired nonsimultaneously during inner-speech production. Data were obtained from four healthy, right-handed participants during an inner-speech task with words in either a social or numerical category. Each of the 8-word stimuli were assessed with 40 trials, resulting in 320 trials in each modality for each participant. The aim of this work is to provide a publicly available bimodal dataset on inner speech, contributing towards speech prostheses.
  •  
9.
  • Simistira Liwicki, Foteini, et al. (author)
  • Bimodal pilot study on inner speech decoding reveals the potential of combining EEG and fMRI
  • 2024
  • Other publication (other academic/artistic)abstract
    • This paper presents the first publicly available bimodal electroencephalography (EEG) / functional magnetic resonance imaging (fMRI) dataset and an open source benchmark for inner speech decoding. Decoding inner speech or thought (expressed through a voice without actual speaking); is a challenge with typical results close to chance level. The dataset comprises 1280 trials (4 subjects, 8 stimuli = 2 categories * 4 words, and 40 trials per stimuli) in each modality. The pilot study reports for the binary classification, a mean accuracy of 71.72\% when combining the two modalities (EEG and fMRI), compared to 62.81% and 56.17% when using EEG, resp. fMRI alone. The same improvement in performance for word classification (8 classes) can be observed (30.29% with combination, 22.19%, and 17.50% without). As such, this paper demonstrates that combining EEG with fMRI is a promising direction for inner speech decoding.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view