SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abolhassani Reza) "

Sökning: WFRF:(Abolhassani Reza)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Micah, Angela E., et al. (författare)
  • Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
  • 2021
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 398:10308, s. 1317-1343
  • Forskningsöversikt (refereegranskat)abstract
    • Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached $8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or $1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that $54.8 billion in development assistance for health was disbursed in 2020. Of this, $13.7 billion was targeted toward the COVID-19 health response. $12.3 billion was newly committed and $1.4 billion was repurposed from existing health projects. $3.1 billion (22.4%) of the funds focused on country-level coordination and $2.4 billion (17.9%) was for supply chain and logistics. Only $714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
3.
  • Abolhassani, Hassan, et al. (författare)
  • Genetic and immunologic evaluation of children with inborn errors of immunity and severe or critical COVID-19
  • 2022
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 150:5, s. 1059-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children. Objective: We evaluated 31 young patients aged 0.5 to 19 years who had preexisting inborn errors of immunity (IEI) but lacked a molecular diagnosis and were later diagnosed with coronavirus disease 2019 (COVID-19) complications. Methods: Genetic evaluation by whole-exome sequencing was performed in all patients. SARS-CoV-2-specific antibodies, autoantibodies against type I IFN (IFN-I), and inflammatory factors in plasma were measured. We also reviewed COVID-19 disease severity/outcome in reported IEI patients. Results: A potential genetic cause of the IEI was identified in 28 patients (90.3%), including mutations that may affect IFN signaling, T- and B-cell function, the inflammasome, and the complement system. From tested patients 65.5% had detectable virus-specific antibodies, and 6.8% had autoantibodies neutralizing IFN-I. Five patients (16.1%) fulfilled the diagnostic criteria of multisystem inflammatory syndrome in children. Eleven patients (35.4%) died of COVID-19 complications. All together, at least 381 IEI children with COVID-19 have been reported in the literature to date. Although many patients with asymptomatic or mild disease may not have been reported, severe presentation of COVID-19 was observed in 23.6% of the published cases, and the mortality rate was 8.7%. Conclusions: Young patients with preexisting IEI may have higher mortality than children without IEI when infected with SARS-CoV-2. Elucidating the genetic basis of IEI patients with severe/critical COVID-19 may help to develop better strategies for prevention and treatment of severe COVID-19 disease and complications in pediatric patients.
  •  
4.
  • Gonzalez-Garnica, Marisol, et al. (författare)
  • One dimensional Au-ZnO hybrid nanostructures based CO2 detection : Growth mechanism and role of the seed layer on sensing performance
  • 2021
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 337
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present research, hybrid Au-ZnO one-dimensional (1-D) nanostructures were grown on silicon substrates with an Al-doped ZnO (AZO) seed layer (Ultrasonic Spray Pyrolysis: USP grown) and no seed layer (NSL) using two different catalytic gold films of 2 nm and 4 nm, respectively. Consequently, such 1-D nanostructures growth was associated with the vapor-liquid-solid (VLS) and vapor-solid (VS) processes. Scanning electron microscopy (SEM) imaging analysis confirms that heat treatment triggered Au nanoparticles nucleation with varying diameters. The Au nanoparticles size and underneath seed layer texture strongly affect the morphology and aspect ratio of 1-D ZnO nanostructures. The seed layer (1-D USP) sample resulted in the growth of longer nanowires (NWs) with a high aspect ratio. The NSL sample showed the formation of nanorods (NRs) with a low aspect ratio mainly via VS growth process. X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), and photoluminescence (PL) analysis also revealed the differences in the NWs and NRs properties and confirmed VLS and VS growth mechanisms. CO2 gas sensing performance at different concentrations was demonstrated, and NWs with seed layer showed a relatively higher sensing response. In contrast, NSL samples (NRs) exhibited two times faster response. A detailed gas sensing mechanism with different CO2 adsorption modes based on properties of 1D nanostructures has been discussed. Currently, CO2 sensing and capturing are critical topics in the green transition framework. The present work would be of high significance to the scientific field of NW growth and fulfill the urgent need for CO2 gas sensing.
  •  
5.
  • Kumar, Raj, et al. (författare)
  • Core-shell nanostructures : perspectives towards drug delivery applications
  • 2020
  • Ingår i: Journal of materials chemistry. B. - : Royal Society of Chemistry (RSC). - 2050-750X .- 2050-7518. ; 8:39, s. 8992-9027
  • Forskningsöversikt (refereegranskat)abstract
    • Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (3)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Abolhassani, Hassan (3)
McKee, Martin (2)
Rezaei, Nima (2)
Salama, Joseph S. (2)
Abbafati, Cristiana (2)
Zaki, Maysaa El Saye ... (2)
visa fler...
Farzadfar, Farshad (2)
Foigt, Nataliya A. (2)
Khader, Yousef Saleh (2)
Kumar, G. Anil (2)
Pereira, David M. (2)
Tran, Bach Xuan (2)
Vasankari, Tommi Juh ... (2)
Vu, Giang Thu (2)
Werdecker, Andrea (2)
Xu, Gelin (2)
Khubchandani, Jagdis ... (2)
Kosen, Soewarta (2)
Majeed, Azeem (2)
Mishra, Yogendra Kum ... (2)
Molokhia, Mariam (2)
Rabiee, Navid (2)
Shrime, Mark G. (2)
Panda, Pritam Kumar, ... (2)
Hanif, Asif (2)
Arab-Zozani, Morteza (2)
Doshmangir, Leila (2)
Ayano, Getinet (2)
Bahrami, Mohammad Am ... (2)
Shibuya, Kenji (2)
Savic, Miloje (2)
Hosseinzadeh, Mehdi (2)
Bayati, Mohsen (2)
Panda-Jonas, Songhom ... (2)
Busse, Reinhard (2)
Abedi,, Aidin (2)
Fullman, Nancy (2)
De Neve, Jan-Walter (2)
Ullah, Saif (2)
Abd El Razek, Hassan ... (2)
Arabloo, Jalal (2)
Bijani, Ali (2)
Eskandarieh, Sharare ... (2)
Fukumoto, Takeshi (2)
Jurisson, Mikk (2)
Kanchan, Tanuj (2)
Kim, Yun Jin (2)
Mansournia, Mohammad ... (2)
Mohajer, Bahram (2)
Mousavi, Seyyed Meys ... (2)
visa färre...
Lärosäte
Uppsala universitet (5)
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (1)
Mittuniversitetet (1)
Högskolan Dalarna (1)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy