SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Abramoff Rose Z.) "

Sökning: WFRF:(Abramoff Rose Z.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramoff, Rose Z., et al. (författare)
  • How much carbon can be added to soil by sorption?
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 152:2-3, s. 127-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the upper limit of stable soil carbon storage is essential for guiding policies to increase soil carbon storage. One pool of carbon considered particularly stable across climate zones and soil types is formed when dissolved organic carbon sorbs to minerals. We quantified, for the first time, the potential of mineral soils to sorb additional dissolved organic carbon (DOC) for six soil orders. We compiled 402 laboratory sorption experiments to estimate the additional DOC sorption potential, that is the potential of excess DOC sorption in addition to the existing background level already sorbed in each soil sample. We estimated this potential using gridded climate and soil geochemical variables within a machine learning model. We find that mid- and low-latitude soils and subsoils have a greater capacity to store DOC by sorption compared to high-latitude soils and topsoils. The global additional DOC sorption potential for six soil orders is estimated to be 107 ± 13 Pg C to 1 m depth. If this potential was realized, it would represent a 7% increase in the existing total carbon stock.
  •  
2.
  • Georgiou, Katerina, et al. (författare)
  • Emergent temperature sensitivity of soil organic carbon driven by mineral associations
  • 2024
  • Ingår i: Nature Geoscience. - 1752-0894. ; 17:3, s. 205-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.
  •  
3.
  • Georgiou, Katerina, et al. (författare)
  • Global stocks and capacity of mineral-associated soil organic carbon
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil is the largest terrestrial reservoir of organic carbon and is central for climate change mitigation and carbon-climate feedbacks. Chemical and physical associations of soil carbon with minerals play a critical role in carbon storage, but the amount and global capacity for storage in this form remain unquantified. Here, we produce spatially-resolved global estimates of mineral-associated organic carbon stocks and carbon-storage capacity by analyzing 1144 globally-distributed soil profiles. We show that current stocks total 899 Pg C to a depth of 1 m in non-permafrost mineral soils. Although this constitutes 66% and 70% of soil carbon in surface and deeper layers, respectively, it is only 42% and 21% of the mineralogical capacity. Regions under agricultural management and deeper soil layers show the largest undersaturation of mineral-associated carbon. Critically, the degree of undersaturation indicates sequestration efficiency over years to decades. We show that, across 103 carbon-accrual measurements spanning management interventions globally, soils furthest from their mineralogical capacity are more effective at accruing carbon; sequestration rates average 3-times higher in soils at one tenth of their capacity compared to soils at one half of their capacity. Our findings provide insights into the world’s soils, their capacity to store carbon, and priority regions and actions for soil carbon management.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy