SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Acacio S.) "

Sökning: WFRF:(Acacio S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vidal, R. M., et al. (författare)
  • Colonization factors among enterotoxigenic Escherichia coli isolates from children with moderate-to-severe diarrhea and from matched controls in the Global Enteric Multicenter Study (GEMS)
  • 2019
  • Ingår i: Plos Neglected Tropical Diseases. - : Public Library of Science (PLoS). - 1935-2735. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Enterotoxigenic Escherichia coli (ETEC) encoding heat-stable enterotoxin (ST) alone or with heat-labile enterotoxin (LT) cause moderate-to-severe diarrhea (MSD) in developing country children. The Global Enteric Multicenter Study (GEMS) identified ETEC encoding ST among the top four enteropathogens. Since the GEMS objective was to provide evidence to guide development and implementation of enteric vaccines and other interventions to diminish diarrheal disease morbidity and mortality, we examined colonization factor (CF) prevalence among ETEC isolates from children age <5 years with MSD and from matched controls in four African and three Asian sites. We also assessed strength of association of specific CFs with MSD. Methodology/Principal findings MSD cases enrolled at healthcare facilities over three years and matched controls were tested in a standardized manner for many enteropathogens. To identify ETEC, three E. coli colonies per child were tested by polymerase chain reaction (PCR) to detect genes encoding LT, ST; confirmed ETEC were examined by PCR for major CFs (Colonization Factor Antigen I [CFA/I] or Coli Surface [CS] antigens CS1-CS6) and minor CFs (CS7, CS12, CS13, CS14, CS17, CS18, CS19, CS20, CS21, CS30). ETEC from 806 cases had a single toxin/CF profile in three tested strains per child. Major CFs, components of multiple ETEC vaccine candidates, were detected in 66.0% of LT/ST and ST-only cases and were associated with MSD versus matched controls by conditional logistic regression (p0.006); major CFs detected in only 25.0% of LT-only cases weren't associated with MSD. ETEC encoding exclusively CS14, identified among 19.9% of 291 ST-only and 1.5% of 259 LT/ST strains, were associated with MSD (p = 0.0011). No other minor CF exhibited prevalence 5% and significant association with MSD. Conclusions/Significance Major CF-based efficacious ETEC vaccines could potentially prevent up to 66% of pediatric MSD cases due to ST-encoding ETEC in developing countries; adding CS14 extends coverage to similar to 77%. Author summary Enterotoxigenic Escherichia coli (ETEC) were found to be one of the four most consistently important agents that cause moderate-to-severe diarrhea among children <5 years of age in a large case-control study, the Global Enteric Multicenter Study, performed in four countries in sub-Saharan Africa and three in South Asia. ETEC attach to the lining of the human small intestine by means of protein colonization factors (CFs), after which bacterial toxins stimulate intestinal secretion resulting in diarrhea. Moderate-to-severe diarrhea in young children in developing countries can lead to malnutrition and death. Vaccines are being developed to prevent ETEC diarrhea and its consequences. Several ETEC vaccines aim to stimulate antibodies (protective proteins) that will bind CFs and prevent the bacteria from attaching to intestinal cells, which should, in turn, prevent ETEC diarrhea. Different types of CFs exist. To guide the development of vaccines intending to provide broad protection against ETEC, one must know the frequency with which the different major CFs are produced by ETEC. This paper reports an extensive systematic survey of ETEC CFs and provides helpful information to guide the development of ETEC vaccines.
  •  
2.
  • Gauld, Jethro G., et al. (författare)
  • Hotspots in the grid : Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa
  • 2022
  • Ingår i: Journal of Applied Ecology. - : John Wiley & Sons. - 0021-8901 .- 1365-2664. ; 59:6, s. 1496-1512
  • Tidskriftsartikel (refereegranskat)abstract
    • Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species' specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5 x 5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and applications. We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy