SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Achtert Peggy) "

Sökning: WFRF:(Achtert Peggy)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden
  • 2014
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 119:3, s. 1386-1405
  • Tidskriftsartikel (refereegranskat)abstract
    • Lidar measurements of polar stratospheric clouds (PSCs) are commonly analyzed in classification schemes that apply the backscatter ratio and the particle depolarization ratio. This similarity of input data suggests comparable results of different classification schemes—despite measurements being performed with a variety of mostly custom-made instruments. Based on a time series of 16 years of lidar measurements at Esrange (68°N, 21°E), Sweden, we show that PSC classification differs substantially depending on the applied scheme. The discrepancies result from varying threshold values of lidar-derived parameters used to define certain PSC types. The resulting inconsistencies could impact the understanding of long-term PSC observations documented in the literature. We identify two out of seven considered classification schemes that are most likely to give reliable results and should be used in future lidar-based studies. Using polarized backscatter ratios gives the advantage of increased contrast for observations of weakly backscattering and weakly depolarizing particles. Improved confidence in PSC classification can be achieved by a more comprehensive consideration of the effect of measurement uncertainties. The particle depolarization ratio is the key to a reliable identification of different PSC types. Hence, detailed information on the calibration of the polarization-sensitive measurement channels should be provided to assess the findings of a study. Presently, most PSC measurements with lidar are performed at 532 nm only. The information from additional polarization-sensitive measurements in the near infrared could lead to an improved PSC classification. Coincident lidar-based temperature measurements at PSC level might provide useful information for an assessment of PSC classification.
  •  
2.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Hygroscopic growth of tropospheric particle number size distributions over the North China Plain
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. D00G07-
  • Tidskriftsartikel (refereegranskat)abstract
    • The hygroscopic growth of atmospheric submicrometer particle size distributions (diameter D-p ranging from 22 to 900 nm) was studied at a rural/suburban site in the North China Plain within the framework of the international Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) research project. The goal was to characterize the regional aerosol in the polluted northeastern plain in China. Size descriptive hygroscopic growth factors (DHGFs) were determined as a function of relative humidity (RH) by relating the particle number size distribution at a dry condition ( 100 nm), the DHGF are substantially higher than in the Aitken particle mode (D-p < 100 nm) as a result of different chemical composition. The size-dependent behavior of the DHGF highlights the relevance of particulate sulfate production over the North China Plain, accomplished by secondary formation from the gas phase and, potentially, liquid phase processes in convective clouds. Furthermore, all results concerning the DHGF show a significant dependency on meteorological air masses. The hygroscopic growth of accumulation mode particles correlates significantly with the PM1-mass fraction of sulfate ions determined by chemical analysis. Finally, this investigation provides a parameterization of the hygroscopic growth of 250-nm particles, which might be useful when predicting visibility and radiative forcing and performing atmospheric aerosol model validations.
  •  
3.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Investigation of polar stratospheric clouds in January 2008 by means of ground-based and spaceborne lidar measurements and microphysical box model simulations
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. D07201-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar stratospheric clouds (PSCs) play a key role in heterogeneous chemistry and ozone depletion in the lower stratosphere. The type of PSC as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions and, thus, ozone depletion. In this study a combination of ground-based and spaceborne lidar measurements were used together with microphysical box model simulations along back trajectories to investigate the formation and alteration of Arctic PSCs. The measurements were made by the Rayleigh/Mie/Raman lidar system at Esrange and by the Cloud-Aerosol Lidar with Orthogonal Polarization aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. Between 20 and 23 January 2008 PSCs composed of liquid particles were observed by CALIPSO between Greenland and the western side of the Scandinavian Mountains. Between 21 and 23 January 2008 the Esrange lidar observed a PSC composed of distinct layers of liquid and solid particles on the eastern side of the mountain range. Microphysical box model simulations along air parcel back trajectories indicate that liquid particles had formed at least 40 h before the observation at Esrange. Furthermore, the model indicates a high HNO(3) uptake into the liquid layer between 10 and 20 h before the observation. The PSC was formed when the air mass was over Greenland. On two occasions during these 20 h, CALIPSO observed PSCs when its measurement tracks crossed the air parcel back trajectory ending at the location of the Esrange lidar. Backscatter ratios calculated from the output of the box model simulation indicate good agreement with the values observed with the Esrange lidar and by CALIPSO. The box model simulations along the back trajectories from Esrange to the CALIPSO ground track and beyond provide us with the unique opportunity to relate ground-based and spaceborne lidar measurements that were not performed at the same spatial location and time. Furthermore, possible differences in the observations from ground and space can be traced to temporal and/or geographically induced changes in particle microphysics within the measured PSCs.
  •  
4.
  • Achtert, Peggy, 1982- (författare)
  • Lidar Measurements of Polar Stratospheric Clouds in the Arctic
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Polar Stratospheric Clouds (PSCs) play a key role for ozone depletion in the polar stratosphere. Its magnitude depends on the type of PSC and its lifetime and extent. This thesis presents PSC observations conducted with the Esrange lidar and the space-borne CALIPSO lidar.PSCs are separated into three types according to their optical properties. The occurrence rate of the different types which are often observed simultaneously as well as their interaction and connection is not well understood. To better understand the processes that govern PSC formation, observations need to be combined with a detailed view of the atmospheric background in which PSCs develop, exist, and are transformed from one type to another.This thesis introduces a new channel of the Esrange lidar for temperature profiling at heights below 35 km. The design of this channel and first temperature measurements within PSCs and cirrus clouds are presented. This is an important step since the majority of PSC-related literature extracts temperatures within PSCs from reanalysis data.In contrast to ground–based measurements space–borne lidar does not rely on cloud–free conditions. Hence, it provides an unprecedented opportunity for studying the connection between PSCs and the underlying synoptic–scale conditions which manifest as tropospheric clouds. This thesis shows that most of the PSCs observed in the Arctic during winter 2007/08 occurred in connection with tropospheric clouds.A combined analysis of ground-based and space-borne lidar observation of PSCs in combination with microphysical modeling can improve our understanding of PSC formation. A first case study of this approach shows how a PSC that was formed by synoptic-scale processes is transformed into another type while passing the Scandinavian mountains.Today a variety of classification schemes provides inconsistent information on PSC properties and types. This thesis suggests a unified classification scheme for lidar measurements of PSCs.
  •  
5.
  • Achtert, Peggy, 1982-, et al. (författare)
  • On the linkage between tropospheric and Polar Stratospheric clouds in the Arctic as observed by space-borne lidar
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:8, s. 3791-3798
  • Tidskriftsartikel (refereegranskat)abstract
    • The type of Polar stratospheric clouds (PSCs) as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions in the polar stratosphere. The formation of PSCs depends strongly on temperature. However, the mechanisms of the formation of solid PSCs are still poorly understood. Recent satellite studies of Antarctic PSCs have shown that their formation can be associated with deep-tropospheric clouds which have the ability to cool the lower stratosphere radiatively and/or adiabatically. In the present study, lidar measurements aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were used to investigate whether the formation of Arctic PSCs can be associated with deep-tropospheric clouds as well. Deep-tropospheric cloud systems have a vertical extent of more than 6.5 km with a cloud top height above 7 km altitude. PSCs observed by CALIPSO during the Arctic winter 2007/2008 were classified according to their type (STS, NAT, or ice) and to the kind of underlying tropospheric clouds. Our analysis reveals that 172 out of 211 observed PSCs occurred in connection with tropospheric clouds. 72% of these 172 observed PSCs occurred above deep-tropospheric clouds. We also find that the type of PSC seems to be connected to the characteristics of the underlying tropospheric cloud system. During the Arctic winter 2007/2008 PSCs consisting of ice were mainly observed in connection with deep-tropospheric cloud systems while no ice PSC was detected above cirrus. Furthermore, we find no correlation between the occurrence of PSCs and the top temperature of tropospheric clouds. Thus, our findings suggest that Arctic PSC formation is connected to adiabatice cooling, i.e. dynamic effects rather than radiative cooling.
  •  
6.
  • Achtert, Peggy, et al. (författare)
  • Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 14983-15002
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents Cloudnet retrievals of Arctic clouds from measurements conducted during a 3-month research expedition along the Siberian shelf during summer and autumn 2014. During autumn, we find a strong reduction in the occurrence of liquid clouds and an increase for both mixed-phase and ice clouds at low levels compared to summer. About 80 % of all liquid clouds observed during the research cruise show a liquid water path below the infrared black body limit of approximately 50 g m(-2). The majority of mixed-phase and ice clouds had an ice water path below 20 g m(-2). Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. Changes in these parameters have little effect on the geometric thickness of liquid clouds while mixed-phase clouds during warm-air advection events are generally thinner than when such events were absent. Cloud-top temperatures are very similar for all mixed-phase clouds. However, more cases of lower cloudtop temperature were observed in the absence of warm-air advection. Profiles of liquid and ice water content are normalized with respect to cloud base and height. For liquid water clouds, the liquid water content profile reveals a strong increase with height with a maximum within the upper quarter of the clouds followed by a sharp decrease towards cloud top. Liquid water content is lowest for clouds observed below an inversion during warm-air advection events. Most mixedphase clouds show a liquid water content profile with a very similar shape to that of liquid clouds but with lower maximum values during events with warm air above the planetary boundary layer. The normalized ice water content profiles in mixed-phase clouds look different from those of liquid water content. They show a wider range in maximum values with the lowest ice water content for clouds below an inversion and the highest values for clouds above or extending through an inversion. The ice water content profile generally peaks at a height below the peak in the liquid water content profile - usually in the centre of the cloud, sometimes closer to cloud base, likely due to particle sublimation as the crystals fall through the cloud.
  •  
7.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:1, s. 91-98
  • Tidskriftsartikel (refereegranskat)abstract
    • The Department of Meteorology at Stockholm University operates the Esrange Rayleigh/Raman lidar at Esrange(68° N, 21° E) near the Swedish city of Kiruna. This paper describes the design and first measurements of the newpure rotational-Raman channel of the Esrange lidar. The Esrange lidar uses a pulsed Nd:YAG solid-state laser operating at 532 nm as light source with a repetition rate of 20 Hz and a pulse energy of 350 mJ. The minimum vertical resolution is 150m and the integration time for one profile is 5000 shots. The newly implemented channel allows for measurements of atmospheric temperature at altitudes below 35 km and is currently optimized for temperature measurements between 180 and 200 K. This corresponds to conditions in the lower Arctic stratosphere during winter. In addition to the temperature measurements, the aerosol extinction coefficientand the aerosol backscatter coefficient at 532 nm can be measured in dependently. Our filter-based design minimizes the systematic error in the obtained temperature profile to less than 0.51 K. By combining rotational-Raman measurements (5–35 km height) and the integration technique (30–80 kmheight), the Esrange lidar is now capable of measuring atmospheric temperature profiles from the upper troposphere up to the mesosphere. With the improved setup, the system can be used to validate current lidar-based polar stratospheric cloud classification schemes. The new capability of the instrument measuring temperature and aerosol extinction furthermore enables studies of the thermal structure and variability of the upper troposphere/lower stratosphere. Although several lidars are operated at polar latitudes, there are few instruments that are capable of measuring temperature profiles in the troposphere, stratosphere, and mesosphere, as well as aerosols extinction in the troposphere and lower stratospherewith daylight capability.
  •  
8.
  • Baars, Holger, et al. (författare)
  • An overview of the first decade of Polly(NET) : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:8, s. 5111-5137
  • Tidskriftsartikel (refereegranskat)abstract
    • A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63 degrees N to 52 degrees S and 72 degrees W to 124 degrees E has been achieved within the Raman and polarization lidar network Polly(NET). This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. Polly(NET) is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Angstrom exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the Polly(NET) locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of Polly(NET) to support the establishment of a global aerosol climatology that covers the entire troposphere.
  •  
9.
  • Ehard, Benedikt, et al. (författare)
  • Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation
  • 2016
  • Ingår i: Monthly Weather Review. - 0027-0644 .- 1520-0493. ; 144:1, s. 77-98
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents a feasible method to complement ground-based middle atmospheric Rayleigh lidar temperature observations with numerical simulations in the lower stratosphere and troposphere to study gravity waves. Validated mesoscale numerical simulations are utilized to complement the temperature below 30-km altitude. For this purpose, high-temporal-resolution output of the numerical results was interpolated on the position of the lidar in the lee of the Scandinavian mountain range. Two wintertime cases of orographically induced gravity waves are analyzed. Wave parameters are derived using a wavelet analysis of the combined dataset throughout the entire altitude range from the troposphere to the mesosphere. Although similar in the tropospheric forcings, both cases differ in vertical propagation. The combined dataset reveals stratospheric wave breaking for one case, whereas the mountain waves in the other case could propagate up to about 40-km altitude. The lidar observations reveal an interaction of the vertically propagating gravity waves with the stratopause, leading to a stratopause descent in both cases.
  •  
10.
  • Ehard, Benedikt, et al. (författare)
  • Long-term lidar observations of wintertime gravity wave activity over northern Sweden
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32:11, s. 1395-1405
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an analysis of gravity wave activity over northern Sweden as deduced from 18 years of wintertime lidar measurements at Esrange (68ºN, 21ºE). Gravity wave potential energy density (GWPED) was used to characterize the strength of gravity waves in the altitude regions 30–40km and 40–50 km. The obtained values ex- ceed previous observations reported in the literature. This is suggested to be due to Esrange’s location downwind of the Scandinavian mountain range and due to differences in the various methods that are currently used to retrieve gravity wave parameters. The analysis method restricted the identification of the dominating vertical wavelengths to a range from 2 to 13 km. No preference was found for any wavelength in this window. Monthly mean values of GW- PED show that most of the gravity waves’ energy dissipates well below the stratopause and that higher altitude regions show only small dissipation rates of GWPED. Our analy- sis does not reproduce the previously reported negative trend in gravity wave activity over Esrange. The observed inter-annual variability of GWPED is connected to the occurrence of stratospheric warmings with generally lower wintertime mean GWPED during years with major stratospheric warmings. A bimodal GWPED occurrence frequency indicates that gravitywave activity at Esrange is affected by both ubiq- uitous wave sources and orographic forcing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy