SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ackermann Jorg) "

Sökning: WFRF:(Ackermann Jorg)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ben Dkhil, Sadok, et al. (författare)
  • Reduction of Charge-Carrier Recombination at ZnO Polymer Blend Interfaces in PTB7-Based Bulk Heterojunction Solar Cells Using Regular Device Structure: Impact of ZnO Nanoparticle Size and Surfactant
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:20, s. 17257-17265
  • Tidskriftsartikel (refereegranskat)abstract
    • Cathode interfacial layers, also called electron extraction layers (EELs), based on zinc oxide (ZnO) have been studied in polymer-blend solar cells toward optimization of the opto-electric properties. Bulk heterojunction solar cells based on poly( {4, 8-bis [(2- ethylhexyl) oxy]b enzo [1,2- b :4,5-b dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]- thieno[3,4-b]thiophenediy1}) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) were realized in regular structure with all-solution-processed interlayers. A pair of commercially available surfactants, ethanolamine (EA) and ethylene glycol (EG), were used to modify the surface of ZnO nanoparticles (NPs) in alcohol-based dispersion. The influence of ZnO particle size was also studied by preparing dispersions of two NP diameters (6 versus 11 nm). Here, we show that performance improvement can be obtained in polymer solar cells via the use of solution-processed ZnO EELs based on surface-modified nanoparticles. By the optimizing of the ZnO dispersion, surfactant ratio, and the resulting morphology of EELs, PTB7/PC70BM solar cells with a power-conversion efficiency of 8.2% could be obtained using small sized EG-modified ZnO NPs that allow the clear enhancement of the performance of solution processed photovoltaic devices compared to state-of-the-art ZnO-based cathode layers.
  •  
2.
  • Fredj, Donia, et al. (författare)
  • New Antimony-Based Organic-Inorganic Hybrid Material as Electron Extraction Layer for Efficient and Stable Polymer Solar Cells
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:47, s. 44820-44828
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid organic-inorganic materials are a new class of materials used as interfacial layers (ILs) in polymer solar cells (PSCs). A hybrid material, composed of antimony as the inorganic part and diaminopyridine as the organic part, is synthesized and described as a new material for application as the electron extraction layer (EEL) in PSCs and compared to the recently demonstrated hybrid materials using bismuth instead of antimony. The hybrid compound is solution-processed onto the photoactive layer based on a classical blend, which is composed of a PTB7-Th low band gap polymer as the donor mixed with PC70BM fullerene as the acceptor material. By using a regular device structure and an aluminum cathode, the solar cells exhibited a power conversion efficiency of 8.42%, equivalent to the reference device using ZnO nanocrystals as the IL, and strongly improved compared to the bismuth-based hybrid material. The processing of extraction layers up to a thickness of 80 nm of such hybrid material reveals that the change from bismuth to antimony has strongly improved the charge extraction and transport properties of the hybrid materials. Interestingly, nanocomposites made of the hybrid material mixed with ZnO nanocrystals in a 1:1 ratio further improved the electronic properties of the extraction layers, leading to a power conversion efficiency of 9.74%. This was addressed to a more closely packed morphology of the hybrid layer, leading to further improved electron extraction. It is important to note that these hybrid EELs, both pure and ZnO-doped, also greatly improved the stability of solar cells, both under dark storage in air and under lighting under an inert atmosphere compared to solar cells treated with ZnO intermediate layers.
  •  
3.
  • Ackermann, Markus, et al. (författare)
  • High-energy and ultra-high-energy neutrinos : A Snowmass white paper
  • 2022
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 36, s. 55-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultrahigh-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years.
  •  
4.
  • Bao, Qinye, et al. (författare)
  • Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488. ; 2:41, s. 17676-17682
  • Tidskriftsartikel (refereegranskat)abstract
    • We systematically show the effect of UV-light soaking on surface electronic structures and chemical states of solution processed ZnO nanoparticle (ZnONP) films in UHV, dry air and UV-ozone. UV exposure in UHV induces a slight decrease in work function and surface-desorption of chemisorbed oxygen, whereas UV exposure in the presence of oxygen causes an increase in work function due to oxygen atom vacancy filling in the ZnO matrix. We demonstrate that UV-light soaking in combination with vacuum or oxygen can tune the work function of the ZnONP films over a range exceeding 1 eV. Based on photovoltaic performance and diode measurements, we conclude that the oxygen atom vacancy filling occurs mainly at the surface of the ZnONP films and that the films consequently retain their n-type behavior despite a significant increase in the measured work function.
  •  
5.
  • Liu, Jincheng, et al. (författare)
  • Gram-Scale Synthesis of Ultrathin Tungsten Oxide Nanowires and their Aspect Ratio-Dependent Photocatalytic Activity
  • 2014
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlag. - 1616-301X .- 1616-3028. ; 24:38, s. 6029-6037
  • Tidskriftsartikel (refereegranskat)abstract
    • Preparation of size-tunable ultrathin W18O49 nanowires by an alcohol-assisted solvothermal decomposition of tungstic acid is reported. The synthesis of ultrathin W18O49 nanowires can be achieved at large scale and low cost, while changing the molecular size of the used alcohols can control the nanowire morphology. With increasing the molecular size of the alcohol, the synthesized W18O49 nanowires have smaller diameters and longer lengths. The as-prepared blue W18O49 nanomaterials show a very strong visible light absorption caused by oxygen defects and an aspect ratio-dependent photocatalytic activity on the degradation of pollutant rhodamine B (RhB) under simulated solar light irradiation. It is found that the W18O49 nanowires with highest aspect ratio show the highest activity in the photodegradation of RhB, which could be related to their higher density of oxygen surface defects in combination with a higher adsorption capability of RhB. This new synthetic route of size tunable ultrathin W18O49 nanomaterials will enlarge their potential applications and can be possibly used in the pyrolyzing synthesis of other metal oxide nanomaterials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy