SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ackermans M.) "

Sökning: WFRF:(Ackermans M.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Groot, P., et al. (författare)
  • Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time
  • 2020
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 69, s. 502-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Bariatric surgery improves glucose metabolism. Recent data suggest that faecal microbiota transplantation (FMT) using faeces from postbariatric surgery diet-induced obese mice in germ-free mice improves glucose metabolism and intestinal homeostasis. We here investigated whether allogenic FMT using faeces from post-Roux-en-Y gastric bypass donors (RYGB-D) compared with using faeces from metabolic syndrome donors (METS-D) has short-term effects on glucose metabolism, intestinal transit time and adipose tissue inflammation in treatment-naïve, obese, insulin-resistant male subjects. Design: Subjects with metabolic syndrome (n=22) received allogenic FMT either from RYGB-D or METS-D. Hepatic and peripheral insulin sensitivity as well as lipolysis were measured at baseline and 2 weeks after FMT by hyperinsulinaemic euglycaemic stable isotope (2H2-glucose and 2H5-glycerol) clamp. Secondary outcome parameters were changes in resting energy expenditure, intestinal transit time, faecal short-chain fatty acids (SCFA) and bile acids, and inflammatory markers in subcutaneous adipose tissue related to intestinal microbiota composition. Faecal SCFA, bile acids, glycaemic control and inflammatory parameters were also evaluated at 8 weeks. Results: We observed a significant decrease in insulin sensitivity 2 weeks after allogenic METS-D FMT (median rate of glucose disappearance: from 40.6 to 34.0 μmol/kg/min; p<0.01). Moreover, a trend (p=0.052) towards faster intestinal transit time following RYGB-D FMT was seen. Finally, we observed changes in faecal bile acids (increased lithocholic, deoxycholic and (iso)lithocholic acid after METS-D FMT), inflammatory markers (decreased adipose tissue chemokine ligand 2 (CCL2) gene expression and plasma CCL2 after RYGB-D FMT) and changes in several intestinal microbiota taxa. Conclusion: Allogenic FMT using METS-D decreases insulin sensitivity in metabolic syndrome recipients when compared with using post-RYGB-D. Further research is needed to delineate the role of donor characteristics in FMT efficacy in human insulin-resistant subjects. Trial registration number: NTR4327.
  •  
2.
  • Warmbrunn, M. V., et al. (författare)
  • Metabolite Profile of Treatment-Naive Metabolic Syndrome Subjects in Relation to Cardiovascular Disease Risk
  • 2021
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic syndrome (MetSyn) is an important risk factor for type 2 diabetes and cardiovascular diseases (CVD). This study aimed to find distinct plasma metabolite profiles between insulin-resistant and non-insulin resistant subjects with MetSyn and evaluate if MetSyn metabolite profiles are related to CVD risk and lipid fluxes. In a cross-sectional study, untargeted metabolomics of treatment-naive males with MetSyn (n = 132) were analyzed together with clinical parameters. In a subset of MetSyn participants, CVD risk was calculated using the Framingham score (n = 111), and lipolysis (n = 39) was measured by a two-step hyperinsulinemic euglycemic clamp using [1,1,2,3,3-(2)H5] glycerol to calculate lipolysis suppression rates. Peripheral insulin resistance was related to fatty acid metabolism and glycerolphosphorylcholine. Interestingly, although insulin resistance is considered to be a risk factor for CVD, we observed that there was little correspondence between metabolites associated with insulin resistance and metabolites associated with CVD risk. The latter mainly belonged to the androgenic steroid, fatty acid, phosphatidylethanolamine, and phophatidylcholine pathways. These data provide new insights into metabolic changes in mild MetSyn pathophysiology and MetSyn CVD risk related to lipid metabolism. Prospective studies may focus on the pathophysiological role of the here-identified biomarkers.
  •  
3.
  • Bouter, K. E. C., et al. (författare)
  • Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects article
  • 2018
  • Ingår i: Clinical and Translational Gastroenterology. - : Ovid Technologies (Wolters Kluwer Health). - 2155-384X. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. Methods: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. Results: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 μmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). Conclusions: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus. © 2018 The Author(s).
  •  
4.
  • Kootte, R. S., et al. (författare)
  • Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition
  • 2017
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 26:4, s. 611-619
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.
  •  
5.
  • Martinez-Ramirez, Daniel, et al. (författare)
  • Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome : The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry
  • 2018
  • Ingår i: JAMA Neurology. - : American Medical Association. - 2168-6149 .- 2168-6157. ; 75:3, s. 353-359
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome.OBJECTIVE To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome.DESIGN, SETTING, AND PARTICIPANTS The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide.EXPOSURES Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]).MAIN OUTCOMES AND MEASURES Scores on the Yale Global Tic Severity Scale and adverse events.RESULTS The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P<.001). The mean (SD) motor tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P <.001), and the mean (SD) phonic tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P <.001). The overall adverse event rate was 35.4%(56 of 158 patients), with intracranial hemorrhage occurring in 2 patients (1.3%), infection in 4 patients with 5 events (3.2%), and lead explantation in 1 patient (0.6%). The most common stimulation-induced adverse effects were dysarthria (10 [6.3%]) and paresthesia (13 [8.2%]).CONCLUSIONS AND RELEVANCE Deep brain stimulationwas associated with symptomatic improvement in patients with Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.
  •  
6.
  •  
7.
  •  
8.
  • Mattsson, Viktor, et al. (författare)
  • Muscle Analyzer System : Exploring Correlation Between Novel Microwave Resonator and Ultrasound-based Tissue Information in the Thigh
  • 2022
  • Ingår i: 2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP). - : Institute of Electrical and Electronics Engineers (IEEE). - 9788831299046
  • Konferensbidrag (refereegranskat)abstract
    • A microwave sensor to safely measure quality of muscle tissue for diagnosis and screening of diseases and medical conditions characterized by fat infiltration in muscle is presented. Fat infiltration in muscle may be seen by a lower dielectric constant of muscle at microwave frequencies corresponding to the large contrast between fat and muscle tissues. A planar resonator based on a bandstop filter and optimized to noninvasively interrogate muscle in the thigh on tissue quality is proposed. Currently, a study based on clinical trials is carried out, and, here, we present a preliminary correlation between skin and fat thicknesses and rectus femoris cross sectional area (CSA) measured with ultrasound and the proposed sensor's resonance frequency. CST simulations based on the ultrasound information guide the analysis. We see that although there are signs of a potential correlation between CSA and resonance, skin and fat variability is still an issue to overcome.
  •  
9.
  • Mattsson, Viktor, et al. (författare)
  • MAS : Standalone Microwave Resonator to Assess Muscle Quality
  • 2021
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 21:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Microwave-based sensing for tissue analysis is recently gaining interest due to advantages such as non-ionizing radiation and non-invasiveness. We have developed a set of transmission sensors for microwave-based real-time sensing to quantify muscle mass and quality. In connection, we verified the sensors by 3D simulations, tested them in a laboratory on a homogeneous three-layer tissue model, and collected pilot clinical data in 20 patients and 25 healthy volunteers. This report focuses on initial sensor designs for the Muscle Analyzer System (MAS), their simulation, laboratory trials and clinical trials followed by developing three new sensors and their performance comparison. In the clinical studies, correlation studies were done to compare MAS performance with other clinical standards, specifically the skeletal muscle index, for muscle mass quantification. The results showed limited signal penetration depth for the Split Ring Resonator (SRR) sensor. New sensors were designed incorporating Substrate Integrated Waveguides (SIW) and a bandstop filter to overcome this problem. The sensors were validated through 3D simulations in which they showed increased penetration depth through tissue when compared to the SRR. The second-generation sensors offer higher penetration depth which will improve clinical data collection and validation. The bandstop filter is fabricated and studied in a group of volunteers, showing more reliable data that warrants further continuation of this development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy