SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adediran Gbotemi A.) "

Sökning: WFRF:(Adediran Gbotemi A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adediran, Gbotemi A., et al. (författare)
  • Microbial Biosynthesis of Thiol Compounds : Implications for Speciation, Cellular Uptake, and Methylation of Hg(II)
  • 2019
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:14, s. 8187-8196
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular uptake of inorganic divalent mercury (Hg(II)) is a key step in microbial formation of neurotoxic methylmercury (MeHg), but the mechanisms remain largely unidentified. We show that the iron reducing bacterium Geobacter sulfurreducens produces and exports appreciable amounts of low molecular mass thiol (LMM-RSH) compounds reaching concentrations of about 100 nM in the assay medium. These compounds largely control the chemical speciation and bioavailability of Hg(II) by the formation of Hg(LMM-RS)2 complexes (primarily with cysteine) in assays without added thiols. By characterizing these effects, we show that the thermodynamic stability of Hg(II)-complexes is a principal controlling factor for Hg(II) methylation by this bacterium such that less stable complexes with mixed ligation involving LMM-RSH, OH-, and Cl- are methylated at higher rates than the more stable Hg(LMM-RS)2 complexes. The Hg(II) methylation rate across different Hg(LMM-RS)2 compounds is also influenced by the chemical structure of the complexes. In contrast to the current perception of microbial uptake of Hg, our results adhere to generalized theories for metal biouptake based on metal complexation with cell surface ligands and refine the mechanistic understanding of Hg(II) availability for microbial methylation.
  •  
2.
  • Adediran, Gbotemi A., et al. (författare)
  • Phosphorus in 2D : Spatially resolved P speciation in two Swedish forest soils as influenced by apatite weathering and podzolization
  • 2020
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 376
  • Tidskriftsartikel (refereegranskat)abstract
    • The cycling and long-term supply of phosphorus (P) in soils are of global environmental and agricultural concern. To advance the knowledge, a detailed understanding of both the vertical and lateral variation of P chemical speciation and retention mechanism(s) is required, a knowledge that is limited in postglacial forest soils. We combined the use of synchrotron X-ray fluorescence microscopy with multi-elemental co-localisation analysis and P K-edge XANES spectroscopy to reveal critical chemical and structural soil properties. We established a two-dimensional (2D) imagery of P retention and speciation at a microscale spatial resolution in two forest soil profiles formed in glaciofluvial and wave-washed sand. The abundance and speciation of P in the upper 40 cm was found to be influenced by soil weathering and podzolization, leading to spatial variability in P speciation on the microscale (< 200 pm) with P existing predominantly as organic P and as PO4 adsorbed to allophane and ferrihydrite, according to XANES spectroscopy. These species were mostly retained at sharp edges and in pore spaces within Al and Si-bearing particles. Despite the relatively young age ( < 15,000 years) of the soils, our results show primary mineral apatite to have weathered from the surface horizons. In the C horizon however, a large fraction of the P was in the form of apatite, which appeared as widely dispersed ( > 600 pm) hot spots of inclusions in aluminosilicates or as discrete micro-sized apatite grains. The subsoil apatite represents a pool of P that trees can potentially acquire and thus add to the biogeochemically active P pool in temperate forest soils.
  •  
3.
  •  
4.
  • Gustafsson, Jon Petter, 1964-, et al. (författare)
  • A Probabilistic Approach to Phosphorus Speciation of Soils Using P K-edge XANES Spectroscopy with Linear Combination Fitting
  • 2020
  • Ingår i: Soil systems. - : MDPI. - 2571-8789. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A common technique to quantitatively estimate P speciation in soil samples is to apply linear combination fitting (LCF) to normalized P K-edge X-ray absorption near-edge structure (XANES) spectra. Despite the rapid growth of such applications, the uncertainties of the fitted weights are still poorly known. Further, there are few reports to what extent the LCF standards represent unique end-members. Here, the co-variance between 34 standards was determined and their significance for LCF was discussed. We present a probabilistic approach for refining the calculation of LCF weights based on Latin hypercube sampling of normalized XANES spectra, where the contributions of energy calibration and normalization to fit uncertainty were considered. Many of the LCF standards, particularly within the same standard groups, were strongly correlated. This supports an approach in which the LCF standards are grouped. Moreover, adsorbed phytates and monetite were well described by other standards, which puts into question their use as end-members in LCF. Use of the probabilistic method resulted in uncertainties ranging from 2 to 11 percentage units. Uncertainties in the calibrated energy were important for the LCF weights, particularly for organic P, which changed with up to 2.7 percentage units per 0.01 eV error in energy. These results highlight the necessity of careful energy calibration and the use of frequent calibration checks. The probabilistic approach, in which at least 100 spectral variants are analyzed, improves our ability to identify the most likely P compounds present in a soil sample, and a procedure for this is suggested in the paper.
  •  
5.
  • Liem-Nguyen, Van, et al. (författare)
  • Determination of picomolar levels of methylmercury complexes with low molecular mass thiols by liquid chromatography tandem mass spectrometry and online preconcentration
  • 2020
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Berlin/Heidelberg. - 1618-2642 .- 1618-2650. ; 412:7, s. 1619-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylmercury (MeHg) is one of the most potent neurotoxins. It is produced in nature through the methylation of inorganic divalent mercury (HgII) by phylogenetically diverse anaerobic microbes. The mechanistic understanding of the processes that govern the extent of bacterial export of MeHg, its bioaccumulation, and bio-toxicity depends on accurate quantification of its species, especially its complexation with low molecular mass thiols; organometallic complexes that are difficult to detect and measure in natural conditions. Here, we report the development of a novel analytical method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 13 MeHg complexes with important thiol compounds which have been observed in the environment and in biological systems. By using online preconcentration via solid phase extraction (SPE), the method offers picomolar (12–530 pM) detection limits, the lowest reported so far for the determination of MeHg compounds. Among three different SPE materials, a weak cation exchange phase showed the best efficiency at a low pH of 2.5. We further report the presence of MeHg-cysteine, MeHg-cysteamine, MeHg-penicillamine, MeHg-cysteinylglycine, and MeHg-glutamylcysteine as the predominant MeHg–thiol complexes in the extracellular milieu of an important HgII methylating bacterium, Geobacter sulfurreducens PCA, exposed to 100 nM of HgII.
  •  
6.
  • Song, Yu, et al. (författare)
  • Toward an Internally Consistent Model for Hg(II) Chemical Speciation Calculations in Bacterium-Natural Organic Matter-Low Molecular Mass Thiol Systems
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:13, s. 8094-8103
  • Tidskriftsartikel (refereegranskat)abstract
    • To advance the scientific understanding of bacteria-driven mercury (Hg) transformation processes in natural environments, thermodynamics and kinetics of divalent mercury Hg(II) chemical speciation need to be understood. Based on Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopic information, combined with competitive ligand exchange (CLE) experiments, we determined Hg(II) structures and thermodynamic constants for Hg(II) complexes formed with thiol functional groups in bacterial cell membranes of two extensively studied Hg(II) methylating bacteria: Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. The Hg EXAFS data suggest that 5% of the total number of membranethiol functionalities (Mem-RStot = 380 ± 50 μmol g–1 C) are situated closely enough to be involved in a 2-coordinated Hg(Mem-RS)2 structure in Geobacter. The remaining 95% of Mem-RSH is involved in mixed-ligation Hg(II)-complexes, combining either with low molecular mass (LMM) thiols like Cys, Hg(Cys)(Mem-RS), or with neighboring O/N membrane functionalities, Hg(Mem-RSRO). We report log K values for the formation of the structures Hg(Mem-RS)2, Hg(Cys)(Mem-RS), and Hg(Mem-RSRO) to be 39.1 ± 0.2, 38.1 ± 0.1, and 25.6 ± 0.1, respectively, for Geobacter and 39.2 ± 0.2, 38.2 ± 0.1, and 25.7 ± 0.1, respectively, for ND132. Combined with results obtained from previous studies using the same methodology to determine chemical speciation of Hg(II) in the presence of natural organic matter (NOM; Suwannee River DOM) and 15 LMM thiols, an internally consistent thermodynamic data set is created, which we recommend to be used in studies of Hg transformation processes in bacterium–NOM–LMM thiol systems.
  •  
7.
  • Tuyishime, J. R. Marius, et al. (författare)
  • Phosphorus abundance and speciation in acid forest Podzols - Effect of postglacial weathering
  • 2022
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 406
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular speciation of phosphorus (P) in forest soils is of strategic importance for sustainable forest management. However, only limited information exists about soil P speciation in boreal forests. We combined P K-edge XANES spectroscopy, wet chemical P extractions, and X-ray diffraction analysis of soil minerals to investigate the vertical distribution of P species in seven podzolised forest soils differing in soil properties and climatic conditions. The results showed that the total P stock was on average, 4.0 g m(-2) in the Oe horizon, 9.5 g m(-2) in the A and E horizons, and substantially higher (117.5 g m(-2), and 109.3 g m(-2)) in the B and C horizons down to 80 cm depth, respectively. Although the Oe horizons contain a minor total P stock, 87% of it was stored as organic P. The composition of P species in the P-depleted A/E horizons was highly variable depending on the site. However, of the P stored in B and C horizons down to 80 cm, 58% was adsorbed P, mostly to Al, while apatite accounted for 25% of P, most of which was found in the C horizons. The apatite stocks in the A/E, B, and C horizons (down to 80 cm) accounted for 2.5%, 20%, and 77.2%, respectively, of the total apatite for all the mineral soils studied. These figures can be explained, first, by the dissolution of primary mineral apatite caused mainly by acidification. Second, P uptake by plants and microorganisms, and the associated formation of the Oe horizons, led to the formation of soil organic P. Further, the formation of organo-metal complexes and podzolization led to the translocation of P to the B horizons, where P accumulated mostly as P adsorbed to imogolite-type materials (e.g. allophane) and ferrihydrite, as shown by P K-edge XANES spectroscopy. In conclusion, this study shows that despite the young age of these soils (<15,000 years), most of the primary mineral apatite in the upper 30 cm has been transformed into organic P, and Fe-, Al-bound PO 4 . Moreover, the subsoil P, mainly consisting of adsorbed P to Al, and apatite, dominates the P inventory and probably serves as a long-term buffer of P.
  •  
8.
  • Zhu, Wei, et al. (författare)
  • Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter
  • 2018
  • Ingår i: Geochimica et Cosmochimica Acta. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0016-7037 .- 1872-9533 .- 0046-564X. ; 220, s. 158-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) contaminated sediments can be significant sources of Hg in aquatic ecosystems and, through re-emission processes, to the atmosphere. Transformation and release of Hg may be enhanced by various sediment perturbation processes, and controlling biogeochemical factors largely remain unclear. We investigated how rates of Hg transformations in pulp-fiber enriched sediment contaminated by Hg from chlor-alkali industry were controlled by (i) transient redox-changes in sulfur and iron chemistry, (ii) the chemical speciation and solubility of Hg, and (iii) the sources and characteristics of organic matter (OM). Sediment-bottom water microcosm systems were exposed to four combinations of air and nitrogen gas for a total time of 24 h. The treatments were: 24 h N-2, 0.5 h air + 23.5 h N-2, 4 h air + 20 h N-2 and 24 h of air exposure. As a result of these treatments, microcosms spanned a wide range of redox potential, as reflected by the dissolved sulfide concentration range of <= 0.3-97 mu M. Four different chemical species of inorganic divalent Hg (Hg-II) and methyl mercury (MeHg), enriched in different Hg isotope tracers, were added to the microcosms: 201 Hg(NO3)(2)(aq), Hg-202(II) adsorbed to OM (Hg-202(II)-OM(ads)), Hg-198(II) as microcrystalline metacinnabar (beta-(HgS)-Hg-198(s)) and (MeHgCl)-Hg-204(aq). Microcosm systems were composed of bottom water mixed with sediment taken at 0-2, 0-5 and 0-10 cm depth intervals. The composition of OM varied with sediment depth such that compared to deeper sediment, the 0-2 cm depth-interval had a 2-fold higher contribution of labile OM originating from algal and terrestrial inputs, serving as metabolic electron-donors for microorganisms. The potential methylation rate constant (k(meth)) of Hg tracers and net formation of ambient MeHg (MeHg/THg molar ratio) increased up to 50% and 400%, respectively at intermediate oxidative conditions, likely because of an observed 2-fold increase in sulfate concentration stimulating the activity of sulfate reducing bacteria with a capability of methylating Hg-II. Due to differences in Hg-II water-sediment partitioning, k(meth) varied by a factor of 11-70 for the different isotope-enriched Hg tracers. The chemical form of Hg-II was a major controlling factor for k(meth) and its response to the resuspension-oxidation of the system. The beta-(HgS)-Hg-198(s) tracer had the lowest k(meth) and it was mainly constrained by redox-driven Hg-II solubility. The Hg-202(II)-OM(ads) tracer showed an intermediate value on k(meth). It was controlled by both Hg-II solubility and availability of electron donors and acceptors, regulating bacterial activity. The Hg-201(NO3)(2)(aq) tracer had the highest value on k(meth) which was limited mainly by bacterial activity. The k(meth) was up to a factor of 3 higher in the 0-2 cm sediment depth-interval than in 0-5 and 0-10 cm intervals due to a larger contribution of labile OM in the 0-2 cm sediment. Reduction of Hg-II to Hg-0 followed by volatilization exclusively occurred at high sulfidic conditions in the top 0-2 cm sediment. Aromatic moieties of terrestrial OM, present mainly in the top sediment, is suggested to control the reduction of Hg-II. The Hg-0 volatilization rate constant for the Hg-202(II)-OM (ads) tracer exceeded that for beta-(HgS)-Hg-198(s) by one order of magnitude. Our results suggest that contaminated sediments posing a high risk for reactivation of legacy Hg following transient redox resuspension events are characterized by depletion of sulfate in the sediment porewater prior to resuspension, predominance of Hg-II species with solubility exceeding that of crystalline beta-HgS(s), and conditions promoting in situ formation and/ or import of labile OM from algal and terrestrial sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy