SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adegoke Olutayo 1979 ) "

Sökning: WFRF:(Adegoke Olutayo 1979 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adegoke, Olutayo, 1979-, et al. (författare)
  • Influence of laser powder bed fusion process parameters on the microstructure and cracking susceptibility of nickel-based superalloy Alloy 247LC
  • 2022
  • Ingår i: Results in Materials. - : Elsevier. - 2590-048X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Microstructures of material conditions of nickel-based superalloy Alloy 247LC fabricated using laser powder bed fusion (L-PBF) were investigated. Experiments designed in a prior study revealed the L-PBF process parameters for which the material conditions displayed a reduced susceptibility to cracking. Certain process parameters produced material conditions with an increased susceptibility to cracking. In this study, the material conditions were investigated in detail to reveal their microstructure and to determine the cause of cracking. The reason for the transition between a reduced to an increased susceptibility to cracking was examined. The results revealed solidification cracking occurred at high-angle grain boundaries. Solidification cracking may have been promoted at high-angle grain boundaries because of the undercooling contribution of the grain boundary energy. Furthermore, Si segregation was observed in the cracks. Thus, the presence of Si most likely promoted solidification cracking. It was observed that a high crack density, which occurred in the high energy density material condition, was associated with a large average grain size. The fact that certain combination of process parameters produced microstructures with a low susceptibility to cracking, indicates that reliable Alloy 247LC material may be printed using L-PBF by employing improved process parameters. © 2022
  •  
2.
  • Adegoke, Olutayo, 1979-, et al. (författare)
  • Influence of laser powder bed fusion process parameters on the microstructure of solution heat-treated nickel-based superalloy Alloy 247LC
  • 2022
  • Ingår i: Materials Characterization. - : Elsevier. - 1044-5803 .- 1873-4189. ; 183
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, Alloy 247LC samples were built with different laser powder bed fusion (L-PBF) process parameters. The samples were then subjected to solution heat treatment at 1260 °C for 2 h. The grain size of all the samples increased significantly after the heat treatment. The relationship between the process parameters and grain size of the samples was investigated by performing a design of experiment analysis. The results indicated that the laser power was the most significant process parameter that influenced the grain height and aspect ratio. The laser power also significantly influenced the grain width. The as-built and as-built + heat-treated samples with high, medium, and low energy densities were characterized using a field emission gun scanning electron microscope equipped with an electron backscatter diffraction detector. The micrographs revealed that the cells present in the as-built samples disappeared after the heat treatment. Isolated cases of twinning were observed in the grains of the as-built + heat-treated samples. The disappearance of cells, increase in the grain size, and appearance of twins suggested that recrystallization occurred in the alloy after the heat treatment. The occurrence of recrystallization was confirmed by analyzing the grain orientation spread of the alloy, which was lower and more predominantly <1° in the as-built + heat-treated conditions than in the as-built conditions. The microhardness of the as-built + heat-treated samples were high which was plausible because γ’ precipitates were observed in the samples. However, the L-PBF process parameters had a very low correlation with the microhardness of the as-built + heat-treated samples.
  •  
3.
  • Adegoke, Olutayo, 1979- (författare)
  • Processability of Laser Powder Bed Fusion of Alloy 247LC-Influence of process parameters on microstructure and defects
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is about laser powder bed fusion (L-PBF) of the nickel-basedsuperalloy Alloy 247LC. Alloy 247LC is mainly used in gas turbine blades and processing the blades with L-PBF may confer performance advantage over the blades manufactured with conventional methods. This is mainly because L-PBFis more suitable, than conventional methods, for manufacturing the complex cooling holes in the blades. The research was motivated by the need for academia and industry to gain knowledge about the processability of the alloy using L-PBF. The knowledge is essential to eventually solve the problem of cracking encountered when processing the alloy. In addition, dense parts with low void content should be processed and the microstructure and properties should meett he required performance. Heat-treatment is usually performed to acquire final properties, so it is also of interest to study this aspect. Thus, the thesis answered some of the important questions related to process parameter-microstructure- property relationships.
  •  
4.
  • Raza, Tahira, 1972-, et al. (författare)
  • Processing of high-performancematerials by laser beam-powderbed fusion
  • 2023. - 1.
  • Ingår i: Additive Manufacturing of High-Performance Metallic Materials. - : Elsevier. - 9780323918855 - 9780323913829 ; , s. 182-229
  • Bokkapitel (refereegranskat)abstract
    • Processing of high-performance materials by laser beam powder bed fusion (LB-PBF) provides an alternative manufacturing route to, i.e., investment casting and is suitable for production of high-performance materials having complex geometry such as turbine blades. The main benefit of powder bed fusion in general is associated with the fact that increased geometrical complexity does not add any cost. However, the processability of the alloys of interest is closely linked to process parameters where highperformance materials belong to a special class of materials that need substantial attention to avoid problems, not at least with regard to different types of cracking. In this chapter, the relationship between process parameter-microstructure-defect relationship will be discussed and analyzed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy