SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adler Marlen 1984 ) "

Sökning: WFRF:(Adler Marlen 1984 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adler, Marlen, 1984-, et al. (författare)
  • Combinations of mutations in envZ, ftsI, mrdA, acrB and acrR can cause high-level carbapenem resistance in Escherichia coli
  • 2016
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 71:5, s. 1188-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • The worldwide spread of ESBL-producing Enterobacteriaceae has led to an increased use of carbapenems, the group of beta-lactams with the broadest spectrum of activity. Bacterial resistance to carbapenems is mainly due to acquired carbapenemases or a combination of ESBL production and reduced drug influx via loss of outer-membrane porins. Here, we have studied the development of carbapenem resistance in Escherichia coli in the absence of beta-lactamases. We selected mutants with high-level carbapenem resistance through repeated serial passage in the presence of increasing concentrations of meropenem or ertapenem for similar to 60 generations. Isolated clones were whole-genome sequenced, and the order in which the identified mutations arose was determined in the passaged populations. Key mutations were reconstructed, and bacterial growth rates of populations and isolated clones and resistance levels to 23 antibiotics were measured. High-level resistance to carbapenems resulted from a combination of downstream effects of envZ mutation and target mutations in AcrAB-TolC-mediated drug export, together with PBP genes [mrdA (PBP2) after meropenem exposure or ftsI (PBP3) after ertapenem exposure]. Our results show that antibiotic resistance evolution can occur via several parallel pathways and that new mechanisms may appear after the most common pathways (i.e. beta-lactamases and loss of porins) have been eliminated. These findings suggest that strategies to target the most commonly observed resistance mechanisms might be hampered by the appearance of previously unknown parallel pathways to resistance.
  •  
2.
  • Adler, Marlen, 1984-, et al. (författare)
  • High Fitness Costs and Instability of Gene Duplications Reduce Rates of Evolution of New Genes by Duplication-Divergence Mechanisms
  • 2014
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 31:6, s. 1526-1535
  • Tidskriftsartikel (refereegranskat)abstract
    • An important mechanism for generation of new genes is by duplication-divergence of existing genes. Duplication-divergence includes several different sub-models, such as subfunctionalization where after accumulation of neutral mutations the original function is distributed between two partially functional and complementary genes, and neofunctionalization where a new function evolves in one of the duplicated copies while the old function is maintained in another copy. The likelihood of these mechanisms depends on the longevity of the duplicated state, which in turn depends on the fitness cost and genetic stability of the duplications. Here, we determined the fitness cost and stability of defined gene duplications/amplifications on a low copy number plasmid. Our experimental results show that the costs of carrying extra gene copies are substantial and that each additional kbp of DNA reduces fitness by approximately 0.15%. Furthermore, gene amplifications are highly unstable and rapidly segregate to lower copy numbers in absence of selection. Mathematical modelling shows that the fitness costs and instability strongly reduces the likelihood of both sub- and neofunctionalization, but that these effects can be off-set by positive selection for novel beneficial functions.
  •  
3.
  • Adler, Marlen, 1984- (författare)
  • Mechanisms and Dynamics of Carbapenem Resistance in Escherichia coli
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The emergence of extended spectrum β-lactamase (ESBL) producing Enterobacteriaceae worldwide has led to an increased use of carbapenems and may drive the development of carbapenem resistance. Existing mechanisms are mainly due to acquired carbapenemases or the combination of ESBL-production and reduced outer membrane permeability. The focus of this thesis was to study the development of carbapenem resistance in Escherichia coli in the presence and absence of acquired β-lactamases. To this end we used the resistance plasmid pUUH239.2 that caused the first major outbreak of ESBL-producing Enterobacteriaceae in Scandinavia.Spontaneous carbapenem resistance was strongly favoured by the presence of the ESBL-encoding plasmid and different mutational spectra and resistance levels arose for different carbapenems. Mainly, loss of function mutations in the regulators of porin expression caused reduced influx of antibiotic into the cell and in combination with amplification of β-lactamase genes on the plasmid this led to high resistance levels. We further used a pharmacokinetic model, mimicking antibiotic concentrations found in patients during treatment, to test whether ertapenem resistant populations could be selected even at these concentrations. We found that resistant mutants only arose for the ESBL-producing strain and that an increased dosage of ertapenem could not prevent selection of these resistant subpopulations. In another study we saw that carbapenem resistance can even develop in the absence of ESBL-production. We found mutants in export pumps and the antibiotic targets to give high level resistance albeit with high fitness costs in the absence of antibiotics. In the last study, we used selective amplification of β-lactamases on the pUUH239.2 plasmid by carbapenems to determine the cost and stability of gene amplifications. Using mathematical modelling we determined the likelihood of evolution of new gene functions in this region. The high cost and instability of the amplified state makes de novo evolution very improbable, but constant selection of the amplified state may balance these factors until rare mutations can establish a new function.In my studies I observed the influence of β-lactamases on carbapenem resistance and saw that amplification of these genes would further contribute to resistance. The rapid disappearance of amplified arrays of resistance genes in the absence of antibiotic selection may lead to the underestimation of gene amplification as clinical resistance mechanism. Amplification of β-lactamase genes is an important stepping-stone and might lead to the evolution of new resistance genes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy