SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adolfsson Daniel 1992 ) "

Sökning: WFRF:(Adolfsson Daniel 1992 )

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • CorAl : Introspection for robust radar and lidar perception in diverse environments using differential entropy
  • 2022
  • Ingår i: Robotics and Autonomous Systems. - : Elsevier. - 0921-8890 .- 1872-793X. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • Robust perception is an essential component to enable long-term operation of mobile robots. It depends on failure resilience through reliable sensor data and pre-processing, as well as failure awareness through introspection, for example the ability to self-assess localization performance. This paper presents CorAl: a principled, intuitive, and generalizable method to measure the quality of alignment between pairs of point clouds, which learns to detect alignment errors in a self-supervised manner. CorAl compares the differential entropy in the point clouds separately with the entropy in their union to account for entropy inherent to the scene. By making use of dual entropy measurements, we obtain a quality metric that is highly sensitive to small alignment errors and still generalizes well to unseen environments. In this work, we extend our previous work on lidar-only CorAl to radar data by proposing a two-step filtering technique that produces high-quality point clouds from noisy radar scans. Thus, we target robust perception in two ways: by introducing a method that introspectively assesses alignment quality, and by applying it to an inherently robust sensor modality. We show that our filtering technique combined with CorAl can be applied to the problem of alignment classification, and that it detects small alignment errors in urban settings with up to 98% accuracy, and with up to 96% if trained only in a different environment. Our lidar and radar experiments demonstrate that CorAl outperforms previous methods both on the ETH lidar benchmark, which includes several indoor and outdoor environments, and the large-scale Oxford and MulRan radar data sets for urban traffic scenarios. The results also demonstrate that CorAl generalizes very well across substantially different environments without the need of retraining.
  •  
2.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • A Submap per Perspective : Selecting Subsets for SuPer Mapping that Afford Superior Localization Quality
  • 2019
  • Ingår i: 2019 European Conference on Mobile Robots (ECMR). - : IEEE. - 9781728136059
  • Konferensbidrag (refereegranskat)abstract
    • This paper targets high-precision robot localization. We address a general problem for voxel-based map representations that the expressiveness of the map is fundamentally limited by the resolution since integration of measurements taken from different perspectives introduces imprecisions, and thus reduces localization accuracy.We propose SuPer maps that contain one Submap per Perspective representing a particular view of the environment. For localization, a robot then selects the submap that best explains the environment from its perspective. We propose SuPer mapping as an offline refinement step between initial SLAM and deploying autonomous robots for navigation. We evaluate the proposed method on simulated and real-world data that represent an important use case of an industrial scenario with high accuracy requirements in an repetitive environment. Our results demonstrate a significantly improved localization accuracy, up to 46% better compared to localization in global maps, and up to 25% better compared to alternative submapping approaches.
  •  
3.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • CFEAR Radarodometry - Conservative Filtering for Efficient and Accurate Radar Odometry
  • 2021
  • Ingår i: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021). - : IEEE. - 9781665417143 - 9781665417150 ; , s. 5462-5469
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the accurate, highly efficient, and learning-free method CFEAR Radarodometry for large-scale radar odometry estimation. By using a filtering technique that keeps the k strongest returns per azimuth and by additionally filtering the radar data in Cartesian space, we are able to compute a sparse set of oriented surface points for efficient and accurate scan matching. Registration is carried out by minimizing a point-to-line metric and robustness to outliers is achieved using a Huber loss. We were able to additionally reduce drift by jointly registering the latest scan to a history of keyframes and found that our odometry method generalizes to different sensor models and datasets without changing a single parameter. We evaluate our method in three widely different environments and demonstrate an improvement over spatially cross-validated state-of-the-art with an overall translation error of 1.76% in a public urban radar odometry benchmark, running at 55Hz merely on a single laptop CPU thread.
  •  
4.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • CorAl – Are the point clouds Correctly Aligned?
  • 2021
  • Ingår i: 10th European Conference on Mobile Robots (ECMR 2021). - : IEEE.
  • Konferensbidrag (refereegranskat)abstract
    • In robotics perception, numerous tasks rely on point cloud registration. However, currently there is no method that can automatically detect misaligned point clouds reliably and without environment-specific parameters. We propose "CorAl", an alignment quality measure and alignment classifier for point cloud pairs, which facilitates the ability to introspectively assess the performance of registration. CorAl compares the joint and the separate entropy of the two point clouds. The separate entropy provides a measure of the entropy that can be expected to be inherent to the environment. The joint entropy should therefore not be substantially higher if the point clouds are properly aligned. Computing the expected entropy makes the method sensitive also to small alignment errors, which are particularly hard to detect, and applicable in a range of different environments. We found that CorAl is able to detect small alignment errors in previously unseen environments with an accuracy of 95% and achieve a substantial improvement to previous methods.
  •  
5.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • Improving Localisation Accuracy using Submaps in warehouses
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This paper presents a method for localisation in hybrid metric-topological maps built using only local information that is, only measurements that were captured by the robot when it was in a nearby location. The motivation is that observations are typically range and viewpoint dependent and that a map a discrete map representation might not be able to explain the full structure within a voxel. The localisation system uses a method to select submap based on how frequently and where from each submap was updated. This allow the system to select the most descriptive submap, thereby improving the localisation and increasing performance by up to 40%.
  •  
6.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • Lidar-Level Localization With Radar? The CFEAR Approach to Accurate, Fast, and Robust Large-Scale Radar Odometry in Diverse Environments
  • 2023
  • Ingår i: IEEE Transactions on robotics. - : IEEE. - 1552-3098 .- 1941-0468. ; 39:2, s. 1476-1495
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments—outdoors, from urban to woodland, and indoors in warehouses and mines—without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach conservative filtering for efficient and accurate radar odometry (CFEAR), we present an in-depth investigation on a wider range of datasets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar simultaneous localization and mapping (SLAM) and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5 Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160 Hz.
  •  
7.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • Oriented surface points for efficient and accurate radar odometry
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents an efficient and accurate radar odometry pipeline for large-scale localization. We propose a radar filter that keeps only the strongest reflections per-azimuth that exceeds the expected noise level. The filtered radar data is used to incrementally estimate odometry by registering the current scan with a nearby keyframe. By modeling local surfaces, we were able to register scans by minimizing a point-to-line metric and accurately estimate odometry from sparse point sets, hence improving efficiency. Specifically, we found that a point-to-line metric yields significant improvements compared to a point-to-point metric when matching sparse sets of surface points. Preliminary results from an urban odometry benchmark show that our odometry pipeline is accurate and efficient compared to existing methods with an overall translation error of 2.05%, down from 2.78% from the previously best published method, running at 12.5ms per frame without need of environmental specific training. 
  •  
8.
  • Adolfsson, Daniel, 1992- (författare)
  • Robust large-scale mapping and localization : Combining robust sensing and introspection
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The presence of autonomous systems is rapidly increasing in society and industry. To achieve successful, efficient, and safe deployment of autonomous systems, they must be navigated by means of highly robust localization systems. Additionally, these systems need to localize accurately and efficiently in realtime under adverse environmental conditions, and within considerably diverse and new previously unseen environments.This thesis focuses on investigating methods to achieve robust large-scale localization and mapping, incorporating robustness at multiple stages. Specifically, the research explores methods with sensory robustness, utilizing radar, which exhibits tolerance to harsh weather, dust, and variations in lighting conditions. Furthermore, the thesis presents methods with algorithmic robustness, which prevent failures by incorporating introspective awareness of localization quality. This thesis aims to answer the following research questions:How can radar data be efficiently filtered and represented for robust radar odometry? How can accurate and robust odometry be achieved with radar? How can localization quality be assessed and leveraged for robust detection of localization failures? How can self-awareness of localization quality be utilized to enhance the robustness of a localization system?While addressing these research questions, this thesis makes the following contributions to large-scale localization and mapping: A method for robust and efficient radar processing and state-of-the-art odometry estimation, and a method for self-assessment of localization quality and failure detection in lidar and radar localization. Self-assessment of localization quality is integrated into robust systems for large-scale Simultaneous Localization And Mapping, and rapid global localization in prior maps. These systems leverage self-assessment of localization quality to improve performance and prevent failures in loop closure and global localization, and consequently achieve safe robot localization.The methods presented in this thesis were evaluated through comparative assessments of public benchmarks and real-world data collected from various industrial scenarios. These evaluations serve to validate the effectiveness and reliability of the proposed approaches. As a result, this research represents a significant advancement toward achieving highly robust localization capabilities with broad applicability.
  •  
9.
  • Adolfsson, Daniel, 1992-, et al. (författare)
  • TBV Radar SLAM - Trust but Verify Loop Candidates
  • 2023
  • Ingår i: IEEE Robotics and Automation Letters. - : IEEE. - 2377-3766. ; 8:6, s. 3613-3620
  • Tidskriftsartikel (refereegranskat)abstract
    • Robust SLAM in large-scale environments requires fault resilience and awareness at multiple stages, from sensing and odometry estimation to loop closure. In this work, we present TBV (Trust But Verify) Radar SLAM, a method for radar SLAM that introspectively verifies loop closure candidates. TBV Radar SLAM achieves a high correct-loop-retrieval rate by combining multiple place-recognition techniques: tightly coupled place similarity and odometry uncertainty search, creating loop descriptors from origin-shifted scans, and delaying loop selection until after verification. Robustness to false constraints is achieved by carefully verifying and selecting the most likely ones from multiple loop constraints. Importantly, the verification and selection are carried out after registration when additional sources of loop evidence can easily be computed. We integrate our loop retrieval and verification method with a robust odometry pipeline within a pose graph framework. By evaluation on public benchmarks we found that TBV Radar SLAM achieves 65% lower error than the previous state of the art. We also show that it generalizes across environments without needing to change any parameters. We provide the open-source implementation at https://github.com/dan11003/tbv_slam_public
  •  
10.
  • Alhashimi, Anas, 1978-, et al. (författare)
  • BFAR – Bounded False Alarm Rate detector for improved radar odometry estimation
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a new detector for filtering noise from true detections in radar data, which improves the state of the art in radar odometry. Scanning Frequency-Modulated Continuous Wave (FMCW) radars can be useful for localisation and mapping in low visibility, but return a lot of noise compared to (more commonly used) lidar, which makes the detection task more challenging. Our Bounded False-Alarm Rate (BFAR) detector is different from the classical Constant False-Alarm Rate (CFAR) detector in that it applies an affine transformation on the estimated noise level after which the parameters that minimize the estimation error can be learned. BFAR is an optimized combination between CFAR and fixed-level thresholding. Only a single parameter needs to be learned from a training dataset. We apply BFAR tothe use case of radar odometry, and adapt a state-of-the-art odometry pipeline (CFEAR), replacing its original conservative filtering with BFAR. In this way we reduce the state-of-the-art translation/rotation odometry errors from 1.76%/0.5◦/100 m to 1.55%/0.46◦/100 m; an improvement of 12.5%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy