SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adolphi F.) "

Sökning: WFRF:(Adolphi F.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolphi, C., et al. (författare)
  • Exclusive omega meson muoproduction on transversely polarised protons
  • 2017
  • Ingår i: Nuclear Physics B. - : ELSEVIER SCIENCE BV. - 0550-3213 .- 1873-1562. ; 915, s. 454-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Exclusive production of omega mesons was studied at the COMPASS experiment by scattering 160GeV/c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality 1(GeV/c)(2) < Q(2) < 10(GeV/c)(2), Bjorken scaling variable 0.003 < xBj < 0.3 and transverse momentum squared of the omega meson 0.05(GeV/c)(2) < p(T)(2) < 0.5(GeV/c)(2). The measured asymmetries are sensitive to the nucleon helicity-flip Generalised Parton Distributions (GPD) Et hat are related to the orbital angular momentum of quarks, the chiral-odd GPDs H-T that are related to the transversity Parton Distribution Functions, and the sign of the pi omega transition form factor. The results are compared to recent calculations of a GPD-based model.
  •  
2.
  • Miyake, F., et al. (författare)
  • A Single-Year Cosmic Ray Event at 5410 BCE Registered in 14C of Tree Rings
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 48:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual 14C data in tree rings is an outstanding proxy for uncovering extreme solar energetic particle (SEP) events in the past. Signatures of extreme SEP events have been reported in 774/775 CE, 992/993 CE, and ∼660 BCE. Here, we report another rapid increase of 14C concentration in tree rings from California, Switzerland, and Finland around 5410 BCE. These 14C data series show a significant increase of ∼6‰ in 5411–5410 BCE. The signature of 14C variation is very similar to the confirmed three SEP events and points to an extreme short-term flux of cosmic ray radiation into the atmosphere. The rapid 14C increase in 5411/5410 BCE rings occurred during a period of high solar activity and 60 years after a grand 14C excursion during 5481–5471 BCE. The similarity of our 14C data to previous events suggests that the origin of the 5410 BCE event is an extreme SEP event.
  •  
3.
  • Mekhaldi, F., et al. (författare)
  • No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms
  • 2017
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 122:21, s. 11-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge on the occurrence rate of extreme solar storms is strongly limited by the relatively recent advent of satellite monitoring of the Sun. To extend our perspective of solar storms prior to the satellite era and because atmospheric ionization induced by solar energetic particles (SEPs) can lead to the production of odd nitrogen, nitrate spikes in ice cores have been tentatively used to document both the occurrence and intensity of past SEP events. However, the reliability of the use of nitrate in ice records as a proxy for SEP events is strongly debated. This is partly due to equivocal detection of nitrate spikes in single ice cores and possible alternative sources, such as biomass burning plumes. Here we present new continuous high-resolution measurements of nitrate and of the biomass burning species ammonium and black carbon, from several Antarctic and Greenland ice cores. We investigate periods covering the two largest known SEP events of 775 and 994 Common Era as well as the Carrington event and the hard SEP event of February 1956. We report no coincident nitrate spikes associated with any of these benchmark events. We also demonstrate the low reproducibility of the nitrate signal in multiple ice cores and confirm the significant relationship between biomass burning plumes and nitrate spikes in individual ice cores. In the light of these new data, there is no line of evidence that supports the hypothesis that ice cores preserve or document detectable amounts of nitrate produced by SEPs, even for the most extreme events known to date.
  •  
4.
  • Mekhaldi, F., et al. (författare)
  • The Signal of Solar Storms Embedded in Cosmogenic Radionuclides : Detectability and Uncertainties
  • 2021
  • Ingår i: Journal of Geophysical Research: Space Physics. - 2169-9380. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The threat that solar storms pose to our ever-modernizing society has gathered significant interest in the recent past. This is partly due to the discoveries of large peaks in the content of cosmogenic radionuclides such as radiocarbon (14C) in tree rings and beryllium-10 (10Be) and chlorine-36 (36Cl) in ice cores that were linked to extreme solar storms dated to the past millennia. To better assess the threat that they represent, we need to better quantify the relationship between their energy spectrum and their magnitude with respect to the content of the radionuclides that we measure in environmental archives such as ice cores. Here, we model the global production rate that the 59 largest particle storms coming from the Sun have induced for 10Be, 14C, and 36Cl during the past 70 years. We also consider the deposition flux in 10Be and 36Cl over the high latitudes where all Greenland ice cores are located. Our analysis shows that it is unlikely that any recent solar particle event can be detected in 10Be from ice cores. By relating these values to empirical data from ice cores, we are able to quantify different detection limits and uncertainties for 10Be and 36Cl. Due to different sensitivities to solar energetic particles, we assess that 10Be may only be suitable to detect a limited number of extreme solar storms, while 36Cl is suitable to detect any extreme particle event. This implies that the occurrence-rate estimates of extreme solar storms, based mainly on 14C and 10Be, relate to a small population of potential events.
  •  
5.
  • Adolphi, F., et al. (författare)
  • On the Polar Bias in Ice Core 10Be Data
  • 2023
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-897X. ; 128:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmogenic radionuclide records from polar ice cores provide unique insights into past cosmic ray flux variations. They allow reconstructions of past solar activity, space weather, and geomagnetic field changes, and provide insights into past carbon cycle changes. However, all these applications rely on the proportionality of the ice core radionuclide records to the global mean production rate changes. This premise has been long debated from a model and data-perspective. Here, we address this issue through atmospheric mixing model experiments and comparison to independent data. We find that all mixing scenarios, which do not assume complete tropospheric mixing, result in a polar bias. This bias is more prominent for geomagnetic field changes than solar modulation changes. The most likely scenario, supported by independent geomagnetic field records and marine 10Be during the Laschamps geomagnetic field minimum, results in a dampening of geomagnetic field induced changes by 23%–37% and an enhancement of solar-induced changes by 7%–8%. During the Holocene, we do not find conclusive evidence for a polar bias. We propose a correction function that allows deconvolving the glacial ice core record in order to restore proportionality to the global mean signal.
  •  
6.
  • Björck, Svante, et al. (författare)
  • A South Atlantic island record uncovers shifts in westerlies and hydroclimate during the last glacial
  • 2019
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 15:6, s. 1939-1958
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the latitudinal position and strength of the Southern Hemisphere westerlies (SHW) are thought to be tightly coupled to important climate processes, such as cross-equatorial heat fluxes, Atlantic Meridional Overturning Circulation (AMOC), the bipolar seesaw, Southern Ocean ventilation and atmospheric CO2 levels. However, many uncertainties regarding magnitude, direction, and causes and effects of past SHW shifts still exist due to lack of suitable sites and scarcity of information on SHW dynamics, especially from the last glacial. Here we present a detailed hydroclimate multiproxy record from a 36.4-18.6 kyr old lake sediment sequence on Nightingale Island (NI). It is strategically located at 37ĝF S in the central South Atlantic (SA) within the SHW belt and situated just north of the marine Subtropical Front (SF). This has enabled us to assess hydroclimate changes and their link to the regional climate development as well as to large-scale climate events in polar ice cores. The NI record exhibits a continuous impact of the SHW, recording shifts in both position and strength, and between 36 and 31 ka the westerlies show high latitudinal and strength-wise variability possibly linked to the bipolar seesaw. This was followed by 4 kyr of slightly falling temperatures, decreasing humidity and fairly southerly westerlies. After 27 ka temperatures decreased 3-4 ĝC, marking the largest hydroclimate change with drier conditions and a variable SHW position. We note that periods with more intense and southerly-positioned SHW seem to be related to periods of increased CO2 outgassing from the ocean, while changes in the cross-equatorial gradient during large northern temperature changes appear as the driving mechanism for the SHW shifts. Together with coeval shifts of the South Pacific westerlies, our results show that most of the Southern Hemisphere experienced simultaneous atmospheric circulation changes during the latter part of the last glacial. Finally we can conclude that multiproxy lake records from oceanic islands have the potential to record atmospheric variability coupled to large-scale climate shifts over vast oceanic areas..
  •  
7.
  • Fogtmann-Schulz, Alexandra, et al. (författare)
  • Batch processing of tree-ring samples for radiocarbon analysis
  • 2021
  • Ingår i: Radiocarbon. - 0033-8222. ; 63:1, s. 77-89
  • Tidskriftsartikel (refereegranskat)abstract
    • We here present a comparison of methods for the pretreatment of a batch of tree rings for high-precision measurement of radiocarbon at the Aarhus AMS Centre (AARAMS), Aarhus University, Denmark. The aim was to develop an efficient and high-Throughput method able to pretreat ca. 50 samples at a time. We tested two methods for extracting α-cellulose from wood to find the most optimal for our use. One method used acetic acid, the other used HCl acid for the delignification. The testing was conducted on background 14C samples, in order to assess the effect of the different pretreatment methods on low-Activity samples. Furthermore, the extracted wood and cellulose fractions were analyzed using Fourier transform infrared (FTIR) spectroscopy, which showed a successful extraction of α-cellulose from the samples. Cellulose samples were pretreated at AARAMS, and the graphitization and radiocarbon analysis of these samples were done at both AARAMS and the radiocarbon dating laboratory at Lund University to compare the graphitization and AMS machine performance. No significant offset was found between the two sets of measurements. Based on these tests, the pretreatment of tree rings for high-precision radiocarbon analysis at AARAMS will henceforth use HCI for the delignification.
  •  
8.
  • Muscheler, Raimund, et al. (författare)
  • Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 106, s. 81-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in galactic cosmic rays reaching the Earth's atmosphere produce globally synchronous variations in the production rates of cosmogenic radionuclides. In consequence, they leave their imprint in tree-ring 14C and ice-core 10Be records. By identifying this signal and correcting for the known geochemical influences on the radionuclides, it is possible to compare and synchronize the tree-ring chronology and the Greenland ice-core time scale. Here, we compare the IntCal13 and the GICC05 time scales for the last 14,000 years via identification and synchronization of the common short-term variations in the ice-core 10Be and tree-ring 14C records most likely induced by variations in the solar modulation of galactic cosmic rays. We conclude that systematic time-scale differences have to be accounted for if ice-core and 14C-dated records are compared on decadal time scales. These are mostly within the uncertainties of the time scales and the method proposed here. However, for large parts of the mid to late Holocene (i.e. after 7000 yrs BP) the best agreement between ice-core 10Be and tree-ring 14C records is obtained for time shifts outside the stated errors of the respective time scales. A transfer function is proposed that can be applied to synchronize the GICC05 ice-core time scale to the radiocarbon time scale.
  •  
9.
  • Schüpbach, S., et al. (författare)
  • Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.
  •  
10.
  • Svensson, Anders, et al. (författare)
  • Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:4, s. 1565-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12-60ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy