SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Adu Bredu Stephen) "

Sökning: WFRF:(Adu Bredu Stephen)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Morel, Alexandra C., et al. (författare)
  • Carbon dynamics, net primary productivity and human-appropriated net primary productivity across a forest–cocoa farm landscape in West Africa
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25:8, s. 2661-2677
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human-modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human-appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land-use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha−1 year−1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha−1 year−1, which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha−1 year−1; however, depending on the density of shade trees, it ranged from −4.6 to 5.2 Mg C ha−1 year−1. Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.
  •  
2.
  • Morel, Alexandra C., et al. (författare)
  • The Ecological Limits of Poverty Alleviation in an African Forest-Agriculture Landscape
  • 2019
  • Ingår i: Frontiers in Sustainable Food Systems. - : Frontiers Media SA. - 2571-581X. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cocoa yields in Ghana remain low. This has variously been attributed to low rates of fertilizer application, pollinator limitation, and particularly dry growing conditions. In this paper we use an African forest-agriculture landscape dominated by cocoa (Theobroma cacao) to develop an ecological production function, allowing us to identify key ecological and management limits acting on cocoa yields simultaneously. These included more consistent application of fertilizers inter-annually, distributing rotting biomass throughout the farm and reducing the incidence of capsid attacks. By relaxing these limits, we estimate plausible increases in yields and, by extension, farm incomes. Our analysis reveals that resulting increases in cocoa yields requiring both ecological and intensive management interventions could be significant (113 ± 60%); however, benefits are disproportionately realized by the wealthiest households. We found that wealthier households benefited proportionally more from ecological intensification methods (e.g., leaving more rotting biomass in their farms) and the poorest households benefited proportionally more from capital-intensive intensification methods (e.g., pesticide and fertilizer applications). We treated poverty as multi-dimensional, and show that only certain dimensions of poverty (school attendance, assets, and food security) are significantly related to cocoa incomes, while several other dimensions (access to clean water, sanitation and electricity, and infant mortality) are not. We explore how increased household cocoa incomes could impact different dimensions of poverty. Our findings suggest, that if all households adopted the optimal level of each of these management options, and in so doing had similar poverty profiles to those households already managing optimally, we would see the community-averaged probability: a child of a household misses school decrease from 47 to 31%, a household would be able to acquire assets increase from 40 to 59% and a household would have access to an adequate amount of food increase from 62 to 79%.
  •  
3.
  • Aguirre-Gutierrez, Jesus, et al. (författare)
  • Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change. Here, we show that changes in climate affected all three facets of diversity in West Africa in recent decades. Taxonomic and functional diversity increased in wetter forests but tended to decrease in forests with drier climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient. Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier forests showed functional, taxonomic and phylogenetic homogenization. Understanding how different facets of diversity respond to a changing environment across climatic gradients is essential for effective long-term conservation of tropical forest ecosystems. Different aspects of biodiversity may not necessarily converge in their response to climate change. Here, the authors investigate 25-year shifts in taxonomic, functional and phylogenetic diversity of tropical forests along a spatial climate gradient in West Africa, showing that drier forests are less stable than wetter forests.
  •  
4.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
5.
  • Huaraca Huasco, Walter, et al. (författare)
  • Fine root dynamics across pantropical rainforest ecosystems
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:15, s. 3657-3680
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
  •  
6.
  • Malhi, Yadvinder, et al. (författare)
  • The Global Ecosystems Monitoring network : Monitoring ecosystem productivity and carbon cycling across the tropics
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • A rich understanding of the productivity, carbon and nutrient cycling of terrestrial ecosystems is essential in the context of understanding, modelling and managing the future response of the biosphere to global change. This need is particularly acute in tropical ecosystems, home to over 60% of global terrestrial productivity, over half of planetary biodiversity, and hotspots of anthropogenic pressure. In recent years there has been a surge of activity in collecting data on the carbon cycle, productivity, and plant functional traits of tropical ecosystems, most intensively through the Global Ecosystems Monitoring network (GEM). The GEM approach provides valuable insights by linking field-based ecosystem ecology with the needs of Earth system science. In this paper, we review and synthesize the context, history and recent scientific output from the GEM network. Key insights have emerged on the spatial and temporal variability of ecosystem productivity and on the role of temperature and drought stress on ecosystem function and resilience. New work across the network is now linking carbon cycling to nutrient cycling and plant functional traits, and subsequently to airborne remote sensing. We discuss some of the novel emerging patterns and practical and methodological challenges of this approach, and examine current and possible future directions, both within this network and as lessons for a more general terrestrial ecosystem observation scheme.
  •  
7.
  • Rifai, Sami W., et al. (författare)
  • ENSO Drives interannual variation of forest woody growth across the tropics
  • 2018
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 373:1760
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Adu-Bredu, Stephen (7)
Malhi, Yadvinder (6)
Moore, Sam (4)
Phillips, Oliver L. (3)
Oliveras, Imma (3)
Metcalfe, Daniel B. (3)
visa fler...
Berenguer, Erika (3)
Boyd, Emily (2)
Aguirre-Gutierrez, J ... (2)
Lewis, Simon L. (2)
Affum-Baffoe, Kofi (2)
Baker, Timothy R. (2)
Barlow, Jos (2)
Girardin, Cecile A. ... (2)
Ashton, Peter (1)
Fauset, Sophie (1)
Gvozdevaite, Agne (1)
Hubau, Wannes (1)
Peprah, Theresa (1)
Zieminska, Kasia (1)
Boeckx, Pascal (1)
Carvalho, Fernanda A ... (1)
ter Steege, Hans (1)
Aragão, Luiz E. O. C ... (1)
Damasco, Gabriel, 19 ... (1)
Coomes, David A. (1)
Balslev, Henrik (1)
Burslem, David F. R. ... (1)
Banin, Lindsay F. (1)
Puma Vilca, Beisit L ... (1)
Bitariho, Robert (1)
Bogaert, Jan (1)
Cooper, Declan L.M. (1)
Sullivan, Martin J.P ... (1)
Prado, Paulo I. (1)
Barbier, Nicolas (1)
Slik, Ferry (1)
Sonké, Bonaventure (1)
Ewango, Corneille E. ... (1)
de Aguiar, Daniel P. ... (1)
Ahuite Reategui, Man ... (1)
Aiba, Shin Ichiro (1)
Albuquerque, Bianca ... (1)
de Almeida Matos, Fr ... (1)
Alonso, Alfonso (1)
Amani, Christian A. (1)
do Amaral, Dário Dan ... (1)
do Amaral, Iêda Leão (1)
Andrade, Ana (1)
de Andrade Miranda, ... (1)
visa färre...
Lärosäte
Lunds universitet (4)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy