SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aeinehband Shahin) "

Sökning: WFRF:(Aeinehband Shahin)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aeinehband, Shahin, et al. (författare)
  • Cerebrospinal fluid kynurenines in multiple sclerosis : relation to disease course and neurocognitive symptoms
  • 2016
  • Ingår i: Brain, behavior, and immunity. - : Elsevier. - 0889-1591 .- 1090-2139. ; 51, s. 47-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, with a high rate of neurocognitive symptoms for which the molecular background is still uncertain. There is accumulating evidence for dysregulation of the kynurenine pathway (KP) in different psychiatric and neurodegenerative conditions. We here report the first comprehensive analysis of cerebrospinal fluid (CSF) kynurenine metabolites in MS patients of different disease stages and in relation to neurocognitive symptoms. Levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN) were determined with liquid chromatography mass spectrometry in cell-free CSF. At the group level MS patients (cohort 1; n = 71) did not differ in absolute levels of TRP, KYN, KYNA or QUIN as compared to non-inflammatory neurological disease controls (n = 20). Stratification of patients into different disease courses revealed that both absolute QUIN levels and the QUIN/KYN ratio were increased in relapsing-remitting MS (RRMS) patients in relapse. Interestingly, secondary progressive MS (SPMS) displayed a trend for lower TRP and KYNA, while primary progressive (PPMS) patients displayed increased levels of all metabolites, similar to a group of inflammatory neurological disease controls (n = 13). In the second cohort (n = 48), MS patients with active disease and short disease duration were prospectively evaluated for neuropsychiatric symptoms. In a supervised multivariate analysis using orthogonal projection to latent structures (OPLS-DA) depressed patients displayed higher KYNA/TRP and KYN/TRP ratios, mainly due to low TRP levels. Still, this model had low predictive value and could not completely separate the clinically depressed patients from the non-depressed MS patients. No correlation was evident for other neurocognitive measures. Taken together these results demonstrate that clinical disease activity and differences in disease courses are reflected by changes in KP metabolites. Increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively. In contrast, PPMS patients displayed a more divergent pattern more resembling inflammatory conditions such as systemic lupus erythematosus. The pattern of KP metabolites in RRMS patients could not predict neurocognitive symptoms.
  •  
2.
  • Aeinehband, Shahin, et al. (författare)
  • Complement Component C3 and Butyrylcholinesterase Activity Are Associated with Neurodegeneration and Clinical Disability in Multiple Sclerosis
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genomewide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18). C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with >= 9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone.
  •  
3.
  • Aeinehband, Shahin (författare)
  • Innate immunity in progressive multiple sclerosis
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Multiple sclerosis is (MS) is a chronic inflammatory autoimmune disease of central nervous system (CNS) leading to demyelination, axonal damage and neurological handicap, often affecting young adults. A majority of patients with MS initiate their disease with clinical bouts and relapses, but with time convert to a progressive course with dampened signs of CNS inflammation but increasing neurological deficits. This thesis is focused on highlighting the differences in levels of key immune mediators, neurofilament-light (NFL), and kynurenine pathway in different phases of MS and in an animal model of neurodegeneration. In Study I , we determined levels of NFL, complement C3 and activity of the two main acetylcholine hydrolyzing enzymes, AChE and BChE, in cerebrospinal fluid (CSF) from patients with MS and controls. Levels of C3 were higher in MS patients compared to controls and correlated with MS disease disability and NFL. The BChE activity was correlated with C3 and NFL in individual samples suggesting a potential link between intrathecal cholinergic activity and complement activation. The results motivate further studies on the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone. In Study II , we identified a strong naturally occurring cis -regulatory influence on the local expression of complement receptor 2 (Cr2) in the rat spinal cord and increased soluble CR2 (sCR2) in the CSF of nerve injured rates. In transgenic mice loss of Cr2 resulted in increased loss of synapses in the axotomized motor neuron pool. In humans increased sCR2 levels were detected in the CSF of patients with MS as compared to controls, identifying CR2 as a potential novel biomarker of CNS inflammation. These results propose a new role for CR2/sCR2 as a modulator of innate immune reactions and synaptic plasticity in the CNS. In Study III , we determined levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN) in CSF. The absolute QUIN levels and the QUIN/KYN ratio were increased in MS during relapse (RRMS). Interestingly, secondary progressive MS (SPMS) displayed lower TRP and KYNA, while primary progressive (PPMS) patients displayed increased levels of all metabolites, similar to a group of inflammatory neurological disease controls. In addition, MS patients with active disease and short disease duration were prospectively evaluated for neuropsychiatric symptoms. Depressed patients displayed higher KYNA/TRP and KYN/TRP ratios, mainly due to low TRP levels. These results demonstrate that clinical disease activity and differences in disease courses are reflected by changes in KP metabolites. Increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively. In Study IV , we analyzed the main monocytes subsets and/or expression of the chemokine receptors CCR2 or CX3CR1 in relation to different MS disease courses, and after treatment with dimethyl fumarate (DMF). In contrast to the prior studies we could not detect significant quantitative or qualitative differences in the monocyte population between different MS disease stages. DMF treatment resulted in a heterogeneous response, with both expansion and reduction of non-classical monocyte subsets in a proportion of patients. In summary and in context of current knowledge, my findings suggest that later stages of MS is characterized less of adaptive and innate cellular alterations in the periphery, also supported by the relative lack of efficacy of current therapies in MS directed mainly at modulating the adaptive immune defense. However, findings of altered complement expression and metabolic changes involving the KP may reflect low grade widespread tissue responses that can exert effects on synaptic remodeling and neuronal transmission. These pathways deserve attention as potential therapeutic targets in later stages of MS.
  •  
4.
  • Al Nimer, Faiez, et al. (författare)
  • Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination
  • 2016
  • Ingår i: Neurology. - 2332-7812. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We aimed to examine the regulation of lipocalin-2 (LCN2) in multiple sclerosis (MS) and its potential functional relevance with regard to myelination and neurodegeneration. Methods: We determined LCN2 levels in 3 different studies: (1) in CSF and plasma from a case-control study comparing patients with MS (n = 147) with controls (n = 50) and patients with relapsing-remitting MS (n = 75) with patients with progressive MS (n = 72); (2) in CSF and brain tissue microdialysates from a case series of 7 patients with progressive MS; and (3) in CSF at baseline and 60 weeks after natalizumab treatment in a cohort study of 17 patients with progressive MS. Correlation to neurofilament light, a marker of neuroaxonal injury, was tested. The effect of LCN2 on myelination and neurodegeneration was studied in a rat in vitro neuroglial cell coculture model. Results: Intrathecal production of LCN2 was increased predominantly in patients with progressive MS (p < 0.005 vs relapsing-remitting MS) and displayed a positive correlation to neurofilament light (p = 0.005). Levels of LCN2 in brain microdialysates were severalfold higher than in the CSF, suggesting local production in progressive MS. Treatment with natalizumab in progressive MS reduced LCN2 levels an average of 13% (p < 0.0001). LCN2 was found to inhibit remyelination in a dose-dependent manner in vitro. Conclusions: LCN2 production is predominantly increased in progressive MS. Although this moderate increase does not support the use of LCN2 as a biomarker, the correlation to neurofilament light and the inhibitory effect on remyelination suggest that LCN2 might contribute to neurodegeneration through myelination-dependent pathways.
  •  
5.
  • Carlström, Karl E., et al. (författare)
  • Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes
  • 2019
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
  •  
6.
  • Darreh-Shori, Taher, et al. (författare)
  • Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease
  • 2013
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 34:11, s. 2465-2481
  • Tidskriftsartikel (refereegranskat)abstract
    • Butyrylcholinesterase (BuChE) activity is associated with activated astrocytes in Alzheimer's disease brain. The BuChE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic heterogeneity in BuChE affects cerebrospinal fluid (CSF) biomarkers of inflammation and cholinoceptive glial function. Alzheimer's disease patients (n = 179) were BCHE-K-genotyped. Proteomic and enzymatic analyses were performed on CSF and/or plasma. BuChE genotype was linked with differential CSF levels of glial fibrillary acidic protein, S100B, interleukin-1 beta, and tumor necrosis factor (TNF)-alpha. BCHE-K noncarriers displayed 100%-150% higher glial fibrillary acidic protein and 64%-110% higher S100B than BCHE-K carriers, who, in contrast, had 40%-80% higher interleukin-1b and 21%-27% higher TNF-alpha compared with noncarriers. A high level of CSF BuChE enzymatic phenotype also significantly correlated with higher CSF levels of astroglial markers and several factors of the innate complement system, but lower levels of proinflammatory cytokines. These individuals also displayed beneficial paraclinical and clinical findings, such as high cerebral glucose utilization, low beta-amyloid load, and less severe progression of clinical symptoms. In vitro analysis on human astrocytes confirmed the involvement of a regulated BuChE status in the astroglial responses to TNF-alpha and ACh. Histochemical analysis in a rat model of nerve injury-induced neuroinflammation, showed focal assembly of astroglial cells in proximity of BuChE-immunolabeled sites. In conclusion, these results suggest that BuChE enzymatic activity plays an important role in regulating intrinsic inflammation and activity of cholinoceptive glial cells and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of astroglial function is a beneficial response, rather than a disease-driving mechanism. Further studies are needed to explore the therapeutic potential of manipulating BuChE activity or astroglial functional status. (C) 2013 Elsevier Inc. All rights reserved.
  •  
7.
  • Lindblom, Rickard, 1981-, et al. (författare)
  • Complement Receptor 2 is increased in cerebrospinal fluid of multiple sclerosis patients and regulates C3 function
  • 2016
  • Ingår i: Clinical Immunology. - : Elsevier BV. - 1521-6616 .- 1521-7035. ; 166, s. 89-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Besides its vital role in immunity, the complement system also contributes to the shaping of the synaptic circuitry of the brain. We recently described that soluble Complement Receptor 2 (sCR2) is part of the nerve injury response in rodents. We here study CR2 in context of multiple sclerosis (MS) and explore the molecular effects of CR2 on 0 activation. Significant increases in sCR2 levels were evident in cerebrospinal fluid (CSF) from both patients with relapsing remitting MS (n = 33; 6.2 ng/mL) and secondary-progressive MS (n = 9; 7.0 ng/mL) as compared to controls (n = 18; 4.1 ng/mL). Furthermore, CSF sCR2 levels correlated significantly both with CSF C3 and C1q as well as to a disease severity measure. In vitro, sCR2 inhibited the cleavage and down regulation of Cab to iC3b, suggesting that it exerts a modulatory role in complement activation downstream of C3. These results propose a novel function for CR2/sCR2 in human neuroinflammatory conditions.
  •  
8.
  • Lindblom, Rickard P. F., et al. (författare)
  • Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response
  • 2015
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking. Methods: Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA). Expression of Cr2 in the spinal cord was studied in a separate cohort of DA and PVG rats at different time-points after VRA, and also following sciatic nerve transection (SNT) in the same strains. Consequently, Cr2(-/-) mice and Wt controls were used to further explore the role of Cr2 in the spinal cord following SNT. The in vivo experiments were complemented by astrocyte and microglia cell cultures. Results: Expression of Cr2 in naive spinal cord was low but strongly up regulated at 5-7 days after both VRA and SNT. Levels of Cr2 expression, as well as astrocyte activation, was higher in PVG rats than DA rats following both VRA and SNT. Subsequent in vitro studies proposed astrocytes as the main source of Cr2 expression. A functional role for Cr2 is suggested by the finding that transgenic mice lacking Cr2 displayed increased loss of synaptic nerve terminals following nerve injury. We also detected increased levels of soluble CR2 (sCR2) in the cerebrospinal fluid of rats following VRA. Conclusions: These results demonstrate that local expression of Cr2 in the central nervous system is part of the axotomy reaction and is suggested to modulate subsequent complement mediated effects.
  •  
9.
  • Lindblom, Rickard P F, et al. (författare)
  • Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury.
  • 2013
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection.METHODS: The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains.RESULTS: Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury.CONCLUSIONS: In summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.
  •  
10.
  • Lindblom, Rickard P. F., et al. (författare)
  • Unbiased expression mapping identifies a link between the complement and cholinergic systems in the rat central nervous system
  • 2014
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 192:3, s. 1138-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration. To further dissect pathways regulating complement expression, we performed genome-wide expression profiling and linkage analysis in a large F2(DA × PVG) intercross, which identified quantitative trait loci regulating expression of C1qa, C1qb, C3, and C9. Unlike C1qa, C1qb, and C9, which all displayed distinct coregulation with different cis-regulated C-type lectins, C3 was regulated in a coexpression network immediately downstream of butyrylcholinesterase. Butyrylcholinesterase hydrolyses acetylcholine, which exerts immunoregulatory effects partly through TNF-α pathways. Accordingly, increased C3, but not C1q, expression was demonstrated in rat and mouse glia following TNF-α stimulation, which was abrogated in a dose-dependent manner by acetylcholine. These findings demonstrate new pathways regulating CNS complement expression using unbiased mapping in an experimental in vivo system. A direct link between cholinergic activity and complement activation is supported by in vitro experiments. The identification of distinct pathways subjected to regulation by naturally occurring genetic variability is of relevance for the understanding of disease mechanisms in neurologic conditions characterized by neuronal injury and complement activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (10)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Aeinehband, Shahin (11)
Piehl, Fredrik (9)
Lindblom, Rickard P ... (7)
Al Nimer, Faiez (7)
Nilsson, Bo (5)
Nilsson Ekdahl, Kris ... (4)
visa fler...
Khademi, Mohsen (4)
Olsson, Tomas (4)
Vijayaraghavan, Swet ... (4)
Darreh-Shori, Taher (4)
Diez, Margarita (3)
Sandholm, Kerstin (2)
Berg, Alexander (2)
Cullheim, Staffan (2)
Zelano, Johan (2)
Almkvist, Ove (1)
Abdelmagid, Nada (1)
Jokinen, Jussi (1)
Bergman, Joakim (1)
Brenner, Philip (1)
Stahl, Sara (1)
Bhat, Maria (1)
Fidock, Mark D. (1)
Engberg, Goran (1)
Erhardt, Sophie (1)
Långström, Bengt (1)
Checa, Antonio (1)
Wheelock, Craig E. (1)
Dring, Ann M. (1)
Svenningsson, Anders (1)
Elliott, Christina (1)
Bergenheim, Tommy (1)
Christensen, Jeppe R ... (1)
Sellebjerg, Finn (1)
Linington, Christoph ... (1)
Nordberg, Agneta (1)
Kockum, Ingrid (1)
Gyllenberg, Alexandr ... (1)
Grandien, Alf (1)
Badam, Tejaswi (1)
Gustafsson, Mika (1)
Jagodic, Maja (1)
Behbahani, Homira (1)
Ewing, Ewoud (1)
Parsa, Roham (1)
Huang, Jesse (1)
Granqvist, Mathias (1)
Carlström, Karl E. (1)
Enoksson, Sara Lind (1)
Gomez-Cabrero, David (1)
visa färre...
Lärosäte
Karolinska Institutet (11)
Uppsala universitet (7)
Linnéuniversitetet (5)
Umeå universitet (2)
Stockholms universitet (1)
Linköpings universitet (1)
visa fler...
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy