SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Afantitis A) "

Sökning: WFRF:(Afantitis A)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lynch, I, et al. (författare)
  • Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies?
  • 2020
  • Ingår i: Nanomaterials (Basel, Switzerland). - : MDPI AG. - 2079-4991. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a “nano” extension to the InChI standard.
  •  
3.
  • Federico, A, et al. (författare)
  • Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data
  • 2020
  • Ingår i: Nanomaterials (Basel, Switzerland). - : MDPI AG. - 2079-4991. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Preprocessing of transcriptomics data plays a pivotal role in the development of toxicogenomics-driven tools for chemical toxicity assessment. The generation and exploitation of large volumes of molecular profiles, following an appropriate experimental design, allows the employment of toxicogenomics (TGx) approaches for a thorough characterisation of the mechanism of action (MOA) of different compounds. To date, a plethora of data preprocessing methodologies have been suggested. However, in most cases, building the optimal analytical workflow is not straightforward. A careful selection of the right tools must be carried out, since it will affect the downstream analyses and modelling approaches. Transcriptomics data preprocessing spans across multiple steps such as quality check, filtering, normalization, batch effect detection and correction. Currently, there is a lack of standard guidelines for data preprocessing in the TGx field. Defining the optimal tools and procedures to be employed in the transcriptomics data preprocessing will lead to the generation of homogeneous and unbiased data, allowing the development of more reliable, robust and accurate predictive models. In this review, we outline methods for the preprocessing of three main transcriptomic technologies including microarray, bulk RNA-Sequencing (RNA-Seq), and single cell RNA-Sequencing (scRNA-Seq). Moreover, we discuss the most common methods for the identification of differentially expressed genes and to perform a functional enrichment analysis. This review is the second part of a three-article series on Transcriptomics in Toxicogenomics.
  •  
4.
  • Kinaret, PAS, et al. (författare)
  • Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects
  • 2020
  • Ingår i: Nanomaterials (Basel, Switzerland). - : MDPI AG. - 2079-4991. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms’ responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.
  •  
5.
  • Serra, A, et al. (författare)
  • Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment
  • 2020
  • Ingår i: Nanomaterials (Basel, Switzerland). - : MDPI AG. - 2079-4991. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptomics data are relevant to address a number of challenges in Toxicogenomics (TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be used in predictive toxicology, where more advanced modelling techniques are applied. The large volume of molecular profiles produced by omics-based technologies allows the development and application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets are constantly increasing together with a plethora of different methods that are made available to facilitate their analysis, interpretation and the generation of accurate and stable predictive models. In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how network-based approaches can be successfully employed to clarify the mechanism of action (MOA) or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data to create predictive classification and regression models and we address current challenges. Finally, we present a short description of deep learning (DL) and data integration methodologies applied in these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics.
  •  
6.
  • Lynch, I, et al. (författare)
  • Methods, models, mechanisms and metadata: Introducing the Nanotoxicology collection at F1000Research
  • 2021
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 1196-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy